函數(shù)y=(cosx-a)2+1,當(dāng)cosx=a時(shí)有最小值,當(dāng)cosx=-1時(shí)有最大值,則a的取值范圍是( )
A.[-1,0] B.[-1,1]
C.(-∞,0] D.[0,1]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=ax2+bx+c(a、b、c為實(shí)數(shù),且a≠0),F(x)=
(1)若f(-1)=0,曲線y=f(x)通過(guò)點(diǎn)(0,2a+3),且在點(diǎn)(-1,f(-1))處的切線垂直于y軸,求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-1,1]時(shí),g(x)=kx-f(x)是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=滿足對(duì)任意的實(shí)數(shù)x1≠x2都有<0成立,則實(shí)數(shù)a的取值范圍為( )
A.(-∞,2) B.(-∞,]
C.(-∞,2] D.[,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知a、b、c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則( )
A.a>0,4a+b=0 B.a<0,4a+b=0
C.a>0,2a+b=0 D.a<0,2a+b=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)(,2)在冪函數(shù)y=f(x)的圖像上,點(diǎn)(-,)在冪函數(shù)y=g(x)的圖像上,若f(x)=g(x),則x=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=ax2-2ax+2+b(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上單調(diào),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
.函數(shù)f(x)的定義由程序框圖給出,程序運(yùn)行時(shí),輸入h(x)=x,φ(x)=log2x,則f()+f(4)的值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)y=loga(x+3)-1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則+的最小值為( )
A.6 B.7 C.8 D.9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com