如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N (點M在點N的右側(cè)),且。橢圓D:的焦距等于,且過點
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。
(1),
(2)
解析試題分析:)解:(1)設(shè)圓半徑為r, 由條件知圓心C(r,2)
∵圓在x軸截得弦長MN=3
∴ ∴r=
∴圓C的方程為: (3分)
上面方程中令y=0,得 解得x=1或x="4," ∵點M在點N的右側(cè)
∴M(4,0),N(1,0)
∵橢圓焦距2c=2=2 ∴c=1 ∴橢圓方程可化為:
又橢圓過點( 代入橢圓方程得:
解得或(舍) ∴橢圓方程為: (6分)
(2)設(shè)直線l的方程為:y="k(x-4)" 代入橢圓方程化簡得:
(
△=32>0 <
設(shè)A(x1,y1),B(x2,y2) 則x1+x2= x1x2= (7分)
∵點N在以弦AB為直徑的圓的外部,>0
∴(>0
即:>0
-(+>0
化簡得:> ∴<< ∴k∈
考點:圓與橢圓
點評:主要是考查了圓的方程,以及橢圓性質(zhì)的運用,并聯(lián)立方程組設(shè)而不求的數(shù)學(xué)思想的運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點.當(dāng)直線經(jīng)過橢圓的一個頂點時,其傾斜角恰為.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線段的中點為,的中垂線與軸和軸分別交于兩點,
記△的面積為,△(為原點)的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,設(shè)點(),直線:,點在直線上移動,是線段與軸的交點, 過、分別作直線、,使, .
(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為、,求證:直線恒過一定點;
(3)對(2)求證:當(dāng)直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是橢圓上的兩點,已知向量,若且橢圓的離心率,短軸長為2,O為坐標(biāo)原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點為、且過點橢圓;
(2)與雙曲線有相同的漸近線,且過點的雙曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),它與曲線交于A、B兩點。
(1)求的長;
(2)在以為極點,軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=kx+2(k為常數(shù))過橢圓+=1(a>b>0)的上頂點B和左焦點F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d≥,求橢圓離心率e的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com