16.已知函數(shù)f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,則f(2015)+f(-2015)=
A.-1B.0C.1D.2

分析 直接利用函數(shù)的奇偶性,求解函數(shù)值即可.

解答 解:函數(shù)f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1
可得函數(shù)g(x)=ln($\sqrt{1+9{x}^{2}}$-3x)是奇函數(shù),
∴g(2015)+g(-2015)=0.
f(2015)+f(-2015)=g(2015)+1+g(-2015)+1=2.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,且DC=EB=1,AB=4.
(1)證明:平面ADE⊥平面ACD;
(2)當(dāng)三棱錐C-ADE體積最大時(shí),求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是等差數(shù)列,設(shè)bn=a2n+1-an2,證明:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為P,左、右頂點(diǎn)分別為B、A,若$\overrightarrow{PA}$•$\overrightarrow{PB}$=-2,且橢圓C的離心率為$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的方程;
(2)若M,N為橢圓C上的兩點(diǎn),且直線PM與直線PN的斜率之積為$\frac{2}{3}$,求證:直線MN過定點(diǎn),并求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解答下列問題:
(1)化簡(jiǎn):$\frac{cos(π-α)•tan(α-2π)•tan(2π-α)}{sin(π+α)}$;
(2)已知A為三角形的內(nèi)角,且cosA=-$\frac{\sqrt{2}}{2}$,求角A的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在數(shù)列{an}中,a1=1,a2=2,anan+1an+2=an+an+1+an+2,且an+1an+2≠1,求{an}的前2005項(xiàng)和S2005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直三棱柱ABC-A′B′C′滿足∠BAC=90°,AB=AC=$\frac{1}{2}$AA′=2,點(diǎn)M、N分別為A′B,B′C′的中點(diǎn).
(1)求證:MN∥平面A′ACC′;
(2)求三棱錐C-MNB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ,△ABC的面積為P,正方形面積為Q.求$\frac{P}{Q}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為減少汽車尾氣排放,提高空氣質(zhì)量,各地紛紛推出汽車尾號(hào)限行措施,為做好此項(xiàng)工作,某市交支隊(duì)對(duì)市區(qū)各交通樞紐進(jìn)行調(diào)查統(tǒng)計(jì),表中列出了某交通路口單位時(shí)間內(nèi)通過的1000輛汽車的車牌尾號(hào)記錄:
組名尾號(hào)頻數(shù)頻率
第一組0、1、42000.2
第二組3、62500.25
第三組2、5、7ab
第四組8、9e0.3
由于某些數(shù)據(jù)缺失,表中以英文字母作標(biāo)記,請(qǐng)根據(jù)圖表提供的信息計(jì)算:
(Ⅰ)若采用分層抽樣的方法從這1000輛汽車中抽取20輛,了解駕駛員對(duì)尾號(hào)限行的建議,應(yīng)分別從一、二、三、四組中各抽取多少輛?
(Ⅱ)以頻率代替概率,在此路口隨機(jī)抽取4輛汽車,獎(jiǎng)勵(lì)汽車用品,用ξ表示車尾號(hào)在第二組的汽車數(shù)目,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案