分析 (1)根據(jù)f(2)=0及方程f(x)=x有兩個相等實根,求出a與b的值,即可確定出f(x)解析式;
(2)根據(jù)x的范圍,利用二次函數(shù)的性質求出出f(x)的值域即可.
解答 解:(1)根據(jù)題意得:解$\left\{\begin{array}{l}{4a+2b=0}\\{(b-1)^{2}=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=1}\end{array}\right.$,
則f(x)=-$\frac{1}{2}$x2+x;
(2)∵x∈(-1,2],f(x)=-$\frac{1}{2}$(x2-2x+1)+$\frac{1}{2}$=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$,
∴f(x)的值域是(-$\frac{3}{2}$,$\frac{1}{2}$].
點評 此題考查了二次函數(shù)的性質,函數(shù)解析式的求解及常用方法,熟練掌握二次函數(shù)的性質是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-1+\sqrt{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com