精英家教網 > 高中數學 > 題目詳情

【題目】某高中為了推進新課程改革,滿足不同層次學生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設數學、物理、化學、生物和信息技術輔導講座,每位有興趣的同學可以在期間的任何一天參加任何一門科目的輔導講座,也可以放棄任何一門科目的輔導講座.(規(guī)定:各科達到預先設定的人數時稱為滿座,否則稱為不滿座)統(tǒng)計數據表明,各學科講座各天的滿座的概率如下表:

信息技術

生物

化學

物理

數學

周一

周三

周五

根據上表:
(1)求數學輔導講座在周一、周三、周五都不滿座的概率;
(2)設周三各輔導講座滿座的科目數為ξ,求隨機變量ξ的分布列和數學期望.

【答案】
(1)解:設數學輔導講座在周一,周三,周五都不滿座位事件A,

則P(A)=(1﹣


(2)解:由題意隨機變量ξ的可能值為0,1,2,3,4,5,

P(ξ=0)=

P(ξ=1)= = ,

P(ξ=2)= =

P(ξ=3)= ,

P(ξ=4)= ,

P (ξ=5)= ,

所以隨機變量的分布列為:

故Eξ=


【解析】(1)由題意設數學輔導講座在周一,周三,周五都不滿座位事件A,則有獨立事件同時發(fā)生的概率公式即可求得;(2)由于題意可以知道隨機變量ξ的可能值為0,1,2,3,4,5,利用隨見變量的定義及相應的事件的概率公式即可求得隨機變量每一個值下的概率,并列出其分布列,再有期望定義求解.
【考點精析】根據題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調,則ω的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將一塊邊長為6cm的正方形紙片,先按如圖1所示的陰影部分截去四個全等的等腰三角形,然后將剩余部分沿虛線折疊并拼成一個正四棱錐模型(底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐),將該四棱錐如圖2放置,若其正視圖為正三角形,則其體積為cm3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖程序框圖的算法思路源于歐幾里得名著《幾何原本》中的“輾轉相除法”,執(zhí)行該程序框圖,若輸入m,n分別為225、135,則輸出的m=(
A.5
B.9
C.45
D.90

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數G(x)=xlnx+(1﹣x)ln(1﹣x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數f(x)=2aex+1+ ﹣2(a+1)(a>0),若對于任意的x∈(0,+∞),恒有f(x)≥0成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)當m=3時,求函數f(x)的最大值;
(2)解關于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: 的右焦點F( ),過點F作平行于y軸的直線截橢圓C所得的弦長為 . (Ⅰ)求橢圓的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于P,Q兩點,N點在直線x=﹣1上,若△NPQ是等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,把位于直線y=k與直線y=l(k、l均為常數,且k<l)之間的點所組成區(qū)域(含直線y=k,直線y=l)稱為“k⊕l型帶狀區(qū)域”,設f(x)為二次函數,三點(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型帶狀區(qū)域”,如果點(t,t+1)位于“﹣1⊕3型帶狀區(qū)域”,那么,函數y=|f(t)|的最大值為(
A.
B.3
C.
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設n∈N* , n≥3,k∈N*
(1)求值: ①kCnk﹣nCn1k1
(k≥2);
(2)化簡:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

查看答案和解析>>

同步練習冊答案