【題目】已知函數(shù)f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)當(dāng)m=3時(shí),求函數(shù)f(x)的最大值;
(2)解關(guān)于x的不等式f(x)≥0.
【答案】
(1)解:當(dāng)m=3時(shí),f(x)=|x﹣3|﹣2|x﹣1|,
即f(x)= ,
∴當(dāng)x=1時(shí),函數(shù)f(x)的最大值f(1)=1+1=2
(2)解:∵f(x)≥0,
∴|x﹣m|≥2|x﹣1|,
兩邊平方,化簡(jiǎn)得[x﹣(2﹣m)][3x﹣(2+m)]≤0,
令2﹣m= ,解得m=1,
下面分情況討論:
①當(dāng)m>1時(shí),不等式的解集為[2﹣m, ];
②當(dāng)m=1時(shí),不等式的解集為{x|x=1};
③當(dāng)m<1時(shí),不等式的解集為[ ,2﹣m]
【解析】(1)通過(guò)令m=3,然后去絕對(duì)值符號(hào),對(duì)于分段函數(shù)取最大值即可;(2)通過(guò)對(duì)|x﹣m|≥2|x﹣1|兩邊平方,化簡(jiǎn)得[x﹣(2﹣m)][3x﹣(2+m)]≤0,比較2﹣m與 的大小,分類討論即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 = ﹣ ﹣…+(﹣1)n+1 ,求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=2n+λbn , 問(wèn)是否存在實(shí)數(shù)λ使得數(shù)列{cn}(n∈N*)是單調(diào)遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓E: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 .
(Ⅰ)若橢圓E的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦距成等差數(shù)列,求橢圓E的離心率;
(Ⅱ)若橢圓E過(guò)點(diǎn)A(0,﹣2),直線AF1 , AF2與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B,C,且△ABC的面積為 ,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中P﹣ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,E、F,分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點(diǎn)G,使得二面角C﹣PD﹣G的余弦值為 ,若存在,請(qǐng)求出點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級(jí)開始,在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:
信息技術(shù) | 生物 | 化學(xué) | 物理 | 數(shù)學(xué) | |
周一 | |||||
周三 | |||||
周五 |
根據(jù)上表:
(1)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(2)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三個(gè)連續(xù)的自然數(shù)?若存在,求△ABC的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P﹣ABC的四個(gè)頂點(diǎn)都在球O的球面上,已知PA,PB,PC兩兩垂直,PA=1,PB+PC=4,當(dāng)三棱錐的體積最大時(shí),球心O到平面ABC的距離是( )
A.
B.
C.
D. ﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A、B均為實(shí)數(shù)集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={﹣1,3},試用列舉法表示A+B;
(2)設(shè)a1= ,當(dāng)n∈N* , 且n≥2時(shí),曲線 的焦距為an , 如果A={a1 , a2 , …,an},B= ,設(shè)A+B中的所有元素之和為Sn , 對(duì)于滿足m+n=3k,且m≠n的任意正整數(shù)m、n、k,不等式Sm+Sn﹣λSk>0恒成立,求實(shí)數(shù)λ的最大值;
(3)若整數(shù)集合A1A1+A1 , 則稱A1為“自生集”,若任意一個(gè)正整數(shù)均為整數(shù)集合A2的某個(gè)非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問(wèn):是否存在一個(gè)整數(shù)集合既是自生集又是N*的基底集?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com