【題目】已知函數(shù).

(1)證明:在區(qū)間上存在唯一零點;

(2),若有最大值,求實數(shù)的取值范圍.

【答案】(1)見解析(2)

【解析】

1)對求導得到,再對求導,得到,根據(jù)的正負,得到的單調(diào)性,再由定義域求出的正負,從而得到的單調(diào)性,由零點存在定理,進行證明;(2)對求導,得到,令,根據(jù)(1)的結(jié)論,可得上有唯一零點,再按進行分類,分別研究的單調(diào)性,從而得到有最大值時對的要求,得到答案.

(1)

易知在區(qū)間上恒成立,則單調(diào)遞減

所以0,即f(x)單調(diào)遞增,

,則在區(qū)間必存在唯一零點

(2)

所以

,則

(1):單調(diào)遞增

,即上有唯一零點

時,由,所以在區(qū)間單調(diào)遞增;在區(qū)間單調(diào)遞減;此時h(x)存在最大值h(0),滿足題意;

時,由有兩個不同零點x=0,所以h(x)在區(qū)間(0,a)單調(diào)遞減;在區(qū)間單調(diào)遞增;此時h(x)有極大值h(0)2a

h(x)有最大值,可得;,解得,即

綜上所述:時,h(x)有最大值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)的定義域為,且存在實常數(shù),使得對于定義域內(nèi)任意,都有成立,則稱此函數(shù)具有“性質(zhì).

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值的集合,若不具有“性質(zhì)”,請說明理由;

2)已知函數(shù)具有“性質(zhì)”,且當時,,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,且當時,,若函數(shù)的圖像與直線2017個公共點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種零件的質(zhì)量指標值以分數(shù)(滿分100)衡量,并根據(jù)分數(shù)的高低劃分三個等級,如下表:

為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員隨機抽取了100件零件,進行質(zhì)量指標值檢查,將檢查結(jié)果進行整理得到如下的頻率分布直方圖:

(1)若該生產(chǎn)線的質(zhì)量指標值要求為:

第一條:生產(chǎn)線的質(zhì)量指標值合格和優(yōu)秀的零件至少要占全部零件的75%,

第二條:生產(chǎn)線的質(zhì)量指標值平均分不低于95分;

如果同時滿足以上兩條就認定生產(chǎn)線的質(zhì)量指標值合格,否則為不合格,請根據(jù)以上抽樣調(diào)查數(shù)據(jù),判斷該生產(chǎn)線的質(zhì)量指標值是否合格?

(2)在樣本中,按質(zhì)量指標值的等級用分層抽樣的方法從質(zhì)量指標值不合格和優(yōu)秀的零件中抽取5件,再從這5件中隨機抽取2件,求這兩件的質(zhì)量指標值恰好一個不合格一個優(yōu)秀的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|x22x30},B{x|x22mxm240,xRmR}

(1)AB[0,3],求實數(shù)m的值;

(2)ARB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知AB,C三個班共有學生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).

A

6

6.5

7

B

6

7

8

C

5

6

7

8

1)試估計C班學生人數(shù);

2)從A班和B班抽出來的學生中各選一名,記A班選出的學生為甲,B班選出的學生為乙,若學生鍛煉相互獨立,求甲的鍛煉時間大于乙的鍛煉時間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有三個游戲規(guī)則,袋子中分別裝有球,從袋中無放回地取球,問其中不公平的游戲是(

游戲1

游戲2

游戲3

袋中裝有一個紅球和一個白球

袋中裝有2個紅球和2個白球

袋中裝有3個紅球和1個白球

1個球,

1個球,再取1個球

1個球,再取1個球

取出的球是紅球甲勝

取出的兩個球同色甲勝

取出的兩個球同色甲勝

取出的球是白球乙勝

取出的兩個球不同色乙勝

取出的兩個球不同色乙勝

A.游戲1B.游戲2C.游戲3D.游戲2和游戲3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某“雙一流”大學專業(yè)獎學金是以所學專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學金、專業(yè)二等獎學金及專業(yè)三等獎學金,且專業(yè)獎學金每個學生一年最多只能獲得一次.圖(1)是統(tǒng)計了該校名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業(yè)獎學金的頻率柱狀圖.

(Ⅰ)求這名學生中獲得專業(yè)三等獎學金的人數(shù);

(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯(lián)表并判斷是否有的把握認為該校學生獲得專業(yè)一、二等獎學金與是否是“努力型”學生有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種出口產(chǎn)品的關(guān)稅稅率,市場價格(單位:千元)與市場供應(yīng)量(單位:萬件)之間近似滿足關(guān)系式:,其中、均為常數(shù).當關(guān)稅稅率為時,若市場價格為5千元,則市場供應(yīng)量約為1萬件;當關(guān)稅稅率為時,若市場價格為7千元,則市場供應(yīng)量約為2萬件.

(1)試確定、的值;

(2)市場需求量(單位:萬件)與市場價格近似滿足關(guān)系式:.當時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關(guān)稅稅率的最大值.

查看答案和解析>>

同步練習冊答案