已知雙曲線的兩條漸近線的夾角為,則雙曲線的離心率為(  )
A.B.C.D.
A

試題分析:因為雙曲線的漸近線方程為
所以雙曲線的兩條漸近線的夾角為,可知,
所以, ,所以雙曲線的離心率為,故選A.
點評:本題考查雙曲線的性質(zhì)及其應(yīng)用,解題的關(guān)鍵是由漸近線的夾角求出
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點
(I)求橢圓C的離心率:
(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

到圖形上每一個點的距離的最小值稱為點到圖形的距離,那么平面內(nèi)到定圓的距離與到定點的距離相等的點的軌跡不可能是(   )
A.圓B.橢圓C.雙曲線的一支D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線交橢圓兩點,橢圓與軸的正半軸交于點,若的重心恰好落在橢圓的右焦點上,則直線的方程是(      )
A. B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三個數(shù)構(gòu)成一個等比數(shù)列,則圓錐曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是直角坐標(biāo)平面內(nèi)的動點,點到直線(是正常數(shù))的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應(yīng)的垂足分別為,求證=;
(3)記,
(A、B、是(2)中的點),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于S、T兩點,與拋物線交于C、D兩點,且

(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果方程表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是(   )
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是雙曲線的兩個焦點,是以(為坐標(biāo)原點)為圓心,為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案