5.已知圓C與y軸相切,圓心在x軸下方并且與x軸交于A(1,0),B(9,0)兩點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l過點(diǎn)A(1,0)且被圓C所截弦長(zhǎng)為6,求直線l的方程.

分析 (1)由題意,r=5,設(shè)圓心坐標(biāo)為(5,b)(b<0),求出b,可求圓C的方程;
(2)分兩種情況求解:當(dāng)直線的斜率不存在時(shí),只需要驗(yàn)證即可;當(dāng)直線的斜率存在時(shí),根據(jù)弦的一半、半徑和弦心距構(gòu)成直角三角形來求直線的斜率.

解答 解:(1)由題意,r=5,設(shè)圓心坐標(biāo)為(5,b)(b<0),則9-1=2$\sqrt{25-^{2}}$,
∵b<0,∴b=-3,
∴圓C的方程(x-5)2+(y+3)2=25;
(Ⅱ)直線l過點(diǎn)A(1,0)且被圓C所截弦長(zhǎng)為6,圓心到直線的距離等于4.
當(dāng)斜率不存在時(shí),x=1,符合題意;
當(dāng)斜率存在時(shí),設(shè)直線l:y=k(x-1),
即kx-y-k=0,
∵圓心到直線距離為4,
∴$\frac{|5k+3-k|}{\sqrt{{k}^{2}+1}}$=4,∴k=-$\frac{7}{24}$
∴直線l的方程為7x+24y-7=0
故所求直線l為x=1,或7x+24y-7=0.

點(diǎn)評(píng) 本題考查了用待定系數(shù)法求圓的方程,通常用一般式計(jì)算要簡(jiǎn)單;另外圓與直線相交時(shí),半徑、弦長(zhǎng)的一半和弦心距的關(guān)系,注意用到斜率考慮是否存在問題,這是易錯(cuò)出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c(a≤b≤c),且bcosC+ccosB=2asinA.
(Ⅰ)求角A;
(Ⅱ)求證:${a^2}≥(2-\sqrt{3})bc$;
(Ⅲ)若a=b,且BC邊上的中線AM長(zhǎng)為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列{an}中,a1=2,a2=1,且$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}=\frac{2}{{{a_{n+1}}}}$(n∈N*),則a6等于( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若冪函數(shù)f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈Z)的圖象與坐標(biāo)軸無公共點(diǎn),且關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)m的取值集合為{0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.2loga(M-2N)=logaM+logaN,則$\frac{M}{N}$的值為(  )
A.$\frac{1}{4}$B.4C.1D.4或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若x1滿足3x-1=2-x,x2滿足log3(x-1)+x-2=0,則x1+x2等于(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若sinA:sinB:sinC=3:4:6,則cosC=( 。
A.$\frac{11}{24}$B.$\frac{13}{24}$C.-$\frac{13}{24}$D.-$\frac{11}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:橢圓方程$\frac{{x}^{2}}{2m-8}$+$\frac{{y}^{2}}{m-3}$=1.表示焦點(diǎn)在y軸上的橢圓;命題q:復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn)在第三象限.
(1)若命題p為真命題,求實(shí)數(shù)m的范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓的切線長(zhǎng)與|MQ|的比值分別為1或2時(shí),分別求出點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案