分析 設(shè)出M的坐標(biāo),通過解直角三角形表示出切線長,利用兩點距離公式表示出|MQ|的長,利用已知條件求出點M 的軌跡方程.
解答 解:設(shè)點M的坐標(biāo)為(x,y),
則點M到圓的切線長|MA|=$\sqrt{{MO}^{2}-{AO}^{2}}$=$\sqrt{{x}^{2}+{y}^{2}-1}$,
|MQ|=$\sqrt{{(x-2)}^{2}+{y}^{2}}$,
(1)當(dāng)動點M到圓的切線長與|MQ|的比值為1時,
$\sqrt{{x}^{2}+{y}^{2}-1}$=$\sqrt{{(x-2)}^{2}+{y}^{2}}$,
化簡得:4x-5=0,
此時點M的軌跡是一條與x軸垂直的直線;
(1)當(dāng)動點M到圓的切線長與|MQ|的比值為2時,
$\sqrt{{x}^{2}+{y}^{2}-1}$=2$\sqrt{{(x-2)}^{2}+{y}^{2}}$,
化簡得3x2+3y2-16x+17=0,
此時點M的軌跡是一個圓.
點評 本小題考查曲線與方程的關(guān)系,軌跡的概念等解析幾何的基本思想以及綜合運用知識的能力.直接法:直接法是將動點滿足的幾何條件或者等量關(guān)系,直接坐標(biāo)化,列出等式化簡即得動點軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,7] | B. | (3,7) | C. | [2,5] | D. | (2,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com