【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,,,且,EPD中點(diǎn).

I)求證:平面ABCD

II)求二面角B-AE-C的正弦值.

【答案】I)見解析(II

【解析】

I)根據(jù)題目所給條件,利用直線與平面垂直的判定方法分別證明出平面PAB以及平面,進(jìn)而得到,從而推得線面垂直。

II)根據(jù)已知條件,以A為原點(diǎn),AB軸,AD軸,AP軸建立直角坐標(biāo)系,分別求出平面ABE和平面AEC的法向量,最后利用向量法求出二面角B-AE-C的正弦值。

解:(I)證明:∵底面ABCD為正方形,

,又,,

平面PAB,∴

同理,∴平面ABCD

II)建立如圖的空間直角坐標(biāo)系A-xyz,

,,

易知

設(shè)為平面ABE的一個(gè)法向量,

,,∴,,得.

設(shè)為平面AEC的一個(gè)法向量,又

,

.

∴二面角B-AE-C的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)).

(Ⅰ)當(dāng)時(shí),求不等式的解集;

(Ⅱ)求證:,并求等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[11]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)記,的導(dǎo)函數(shù),如果是函數(shù)的兩個(gè)零點(diǎn),且滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)上單調(diào)遞增,又函數(shù).

(1)求實(shí)數(shù)的值,并說明函數(shù)的單調(diào)性;

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的三視圖如圖2所示(小正方形的邊長(zhǎng)為),則該幾何體的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)面是邊長(zhǎng)為2的菱形,,.

(Ⅰ)證明:;

(Ⅱ)若底面是以為直角頂點(diǎn)的直角三角形,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某校研究性學(xué)習(xí)小組共6人,計(jì)劃同時(shí)參觀科普展,該科普展共有甲,乙,丙三個(gè)展廳,6人各自隨機(jī)地確定參觀順序,在每個(gè)展廳參觀一小時(shí)后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時(shí)時(shí)間內(nèi),甲,乙,丙三個(gè)展廳恰好分別有該小組的2個(gè)人;事件B為:在參觀的第二個(gè)小時(shí)時(shí)間內(nèi),該小組在甲展廳人數(shù)恰好為2人,則 ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).

(1)當(dāng)θ=-時(shí),求函數(shù)f(x)的最大值;

(2)求θ的取值范圍,使yf(x)在區(qū)間[-1,]上是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案