【題目】已知某幾何體的三視圖如圖2所示(小正方形的邊長為),則該幾何體的外接球的表面積為( )
A. B. C. D.
【答案】A
【解析】分析:首先根據(jù)題中所給的三視圖,還原幾何體,得到該幾何體是由正方體切割而成的,找到該幾何體的頂點有三個是正方體的棱的中點,一個就是正方體的頂點,之后將幾何體補體,從而得到該三棱錐的外接球是補成的棱柱的外接球,利用公式求得結(jié)果.
詳解:根據(jù)題中所給的三視圖,可以將幾何體還原,可以得到該幾何體是由正方體切割而成的,記正方體是,
則記的中點為E,CD中點為F,中點為G,
題中所涉及的幾何體就是三棱錐,
經(jīng)過分析,將幾何體補體,
取棱中點H,再取正方體的頂點,
從而得到該三棱錐的外接球即為直三棱柱的外接球,
利用正弦定理可以求得底面三角形的外接圓的半徑為,
棱柱的高為4,所以可以求得其外接球的半徑,
所以其表面積為,故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,,,且,E為PD中點.
(I)求證:平面ABCD;
(II)求二面角B-AE-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為、,、分別是雙曲線左、右兩支上關(guān)于坐標(biāo)原點對稱的兩點,且直線的斜率為.、分別為、的中點,若原點在以線段為直徑的圓上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時,若函數(shù)在處的切線與函數(shù)相切,求實數(shù)的值;
(2)當(dāng)時,記.證明:當(dāng)時,存在,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.
Ⅰ求證;
Ⅱ若平面ABCD.
求二面角的大小;
在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出定義:若(其中為整數(shù)),則叫做離實數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)與的圖象有且只有一個公共點,則的取值不可能是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com