【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設(shè)為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.

【答案】(1)(2)見解析            

【解析】試題分析:(1)由已知得,即可得到事件的概率.

(2)由題意得,得到隨機變量的所有可能取值,求得隨機變量取每個值的概率,即可得到隨機變量的分布列,并計算其數(shù)學(xué)期望.

試題解析:

(1)由已知得.所以事件發(fā)生的概率為.

(2)隨機變量的所有可能取值為0,1,2

計算

,

;

所以隨機變量的分布列為:

隨機變量的數(shù)學(xué)期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長為aEPC的中點.

(Ⅰ)求證:PA∥平面BDE;

(Ⅱ)平面PAC⊥平面BDE;

(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求實數(shù)的值;

(2)當(dāng)時,函數(shù)存在零點,求實數(shù)的取值范圍;

(3)設(shè)函數(shù),若函數(shù)的圖像只有一個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的學(xué)生文娛團隊由理科組和文科組構(gòu)成,具體數(shù)據(jù)如表所示:

組別

文科

理科

性別

男生

女生

男生

女生

人數(shù)

3

1

3

2

學(xué)校準(zhǔn)備從該文娛團隊中選出4人到某社區(qū)參加大型公益活動演出,每選出一名男生,給其所在的組記1分;每選出一名女生,給其所在的組記2分,要求被選出的4人中文科組和理科組的學(xué)生都有.
(I)求理科組恰好得4分的概率;
(II)記文科組的得分為X,求隨機變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美國對中國芯片的技術(shù)封鎖,這卻激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的,兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費資金千萬元,現(xiàn)在準(zhǔn)備投入資金進行生產(chǎn).經(jīng)市場調(diào)查與預(yù)測,生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬元,公司獲得毛收入千萬元;生產(chǎn)芯片的毛收入(千萬元)與投入的資金(千萬元)的函數(shù)關(guān)系為,其圖像如圖所示.

(1)試分別求出生產(chǎn)兩種芯片的毛收入(千萬元)與投入資金(千萬元)的函數(shù)關(guān)系式;

(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?

(3)現(xiàn)在公司準(zhǔn)備投入億元資金同時生產(chǎn),兩種芯片,設(shè)投入千萬元生產(chǎn)芯片,用表示公司所過利潤,當(dāng)為多少時,可以獲得最大利潤?并求最大利潤.(利潤芯片毛收入芯片毛收入研發(fā)耗費資金)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面,為線段上一動點,記

(1)當(dāng)時,求異面直線所成角的余弦值;

(2)當(dāng)與平面所成角的正弦值為時,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賓館有間標(biāo)準(zhǔn)相同的客房,客房的定價將影響入住率.經(jīng)調(diào)查分析,得出每間客房的定價與每天的入住率的大致關(guān)系如下表:

每間客房的定價

220元

200元

180元

160元

每天的入住率

對于每間客房,若有客住,則成本為80元;若空閑,則成本為40元.要使此賓館每天的住房利潤最高,則每間客房的定價大致應(yīng)為( )

A. 220元 B. 200元 C. 180元 D. 160元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

(2)當(dāng)時,若對任意的,總存在使成立,求實數(shù)的取值范圍;

(3)若的值域為區(qū)間,是否存在常數(shù),使區(qū)間的長度為?若存在,求出的值,若不存在,請說明理由.(柱:區(qū)間的長度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機抽取該流水線上的件產(chǎn)品作為樣本,稱出它們的重量(單位:克),重量的分組區(qū)間為,,…,,由此得到樣本的頻率分布方圖,如圖所示.

(1)在上述抽取的件產(chǎn)品中任取件,設(shè)為取到重量超過克的產(chǎn)品件數(shù),求的概率;

(2)從上述件產(chǎn)品中任取件,設(shè)為取到重量超過克的產(chǎn)品件數(shù),求的分布列與期望.

查看答案和解析>>

同步練習(xí)冊答案