【題目】在中,、所對的邊長為、,,.
(1)若,求;
(2)討論使有一解、兩解、無解時的取值情況.
【答案】(1)或;(2)答案不唯一,具體見解析.
【解析】
(1)由正弦定理求得B的正弦值,進而求解;
(2)解法一:固定邊(即)和角,以為圓心,邊(即)為半徑作圓弧,該圓弧與角除外的另一邊所在射線的交點即為點.利用幾何方法判定解的個數的不同情況的條件;解法二:利用正弦定理求得,其中,轉化為函數與水平直線交點的個數,然后利用正弦函數的圖象的性質求解.
(1)由正弦定理,得或;
(2)解法一:
如圖所示:
①,即時,無解;
②或,即或時,有一解;
③,即時,有兩解.
解法二:
應用正弦定理,得(*),其中,
方程(*)的解的個數,即函數與水平直線交點的個數.
如圖所示:
當,即時,無解;
當或,即或時有一解;
當,即時有兩解;
科目:高中數學 來源: 題型:
【題目】某商場經銷某商品,顧客可采用一次性付款或分期付款購買.根據以往資料統(tǒng)計,顧客采用一次性付款的概率是經銷一件該商品,若顧客采用一次性付款,商場獲得利潤200元若顧客采用分期付款,商場獲得利潤250元.
(1)求3位購買該商品的顧客中至少有1位采用一次性付款的概率
(2)求3位顧客每人購買1件該商品,商場獲得利潤不超過650元的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國,下面是組委會在選拔賽時隨機抽取的100名選手的成績,按成績分組,得到的頻率分布表如下所示.
題號 | 分組 | 頻數 | 頻率 |
第1組 | 0.100 | ||
第2組 | ① | ||
第3組 | 20 | ② | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
第6組 | 100 | 1.00 |
(1)請先求出頻率分布表中①、②位置的相應數據,再完成如下的頻率分布直方圖;
(2)組委會決定在5名(其中第3組2名,第4組2名,第5組1名)選手中隨機抽取2名選手接受考官進行面試,求第4組至少有1名選手被考官面試的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下幾個命題中:
①線性回歸直線方程恒過樣本中心;
②用相關指數可以刻畫回歸的效果,值越小說明模型的擬合效果越好;
③隨機誤差是引起預報值和真實值之間存在誤差的原因之一,其大小取決于隨機誤差的方差;
④在含有一個解釋變量的線性模型中,相關指數等于相關系數的平方.
其中真命題為 _________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著互聯(lián)網的發(fā)展,諸如“滴滴打車”“神州專車”等網約車服務在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網約車在省的發(fā)展情況,省某調查機構從該省抽取了個城市,分別收集和分析了網約車的兩項指標數,數據如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標數 | |||||
指標數 |
經計算得:
(1)試求與間的相關系數,并利用說明與是否具有較強的線性相關關系(若,則線性相關程度很高,可用線性回歸模型擬合);
(2)立關于的回歸方程,并預測當指標數為時,指標數的估計值.
附:相關公式:,
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,正三角形PAC所在平面與等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中點,OH⊥PC于H.
(1)證明:PC⊥平面BOH;
(2)若,求二面角A-BH-O的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為,是橢圓上一點,記直線的斜率為、,且有.
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于不同兩點和,且滿足(為坐標原點),求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com