17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{\frac{1}{2}},x≥1}\end{array}\right.$,則使f(x)≤2成立的x的取值范圍是(-∞,4].

分析 由分段函數(shù)可得當(dāng)x<1時,f(x)≤2即為2x-1≤2,當(dāng)x≥1時,f(x)≤2即為${x}^{\frac{1}{2}}$≤2,運用指數(shù)函數(shù)和冪函數(shù)的單調(diào)性,解出不等式,最后求并集即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{\frac{1}{2}},x≥1}\end{array}\right.$,
當(dāng)x<1時,f(x)≤2即為2x-1≤2,解得x≤2,即為x<1;
當(dāng)x≥1時,f(x)≤2即為${x}^{\frac{1}{2}}$≤2,解得x≤4,即為1≤x≤4.
則有x的取值范圍是(-∞,1)∪[1,4]=(-∞,4].
故答案為:(-∞,4].

點評 本題考查分段函數(shù)的運用:解不等式,主要考查指數(shù)函數(shù)和冪函數(shù)的單調(diào)性的運用,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、P分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=($\frac{1}{2}$,x,y),且$\frac{1}{x}$+$\frac{a}{y}$≥18恒成立,則正實數(shù)a的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a、b是實數(shù),a≠0,函數(shù)f(x)=ax2+$\frac{x}$(x>0).
(1)試就a、b的取值,討論f(x)的零點個數(shù);
(2)若函數(shù)g(x)=f(x)-f(2)在區(qū)間(0,2)內(nèi)有零點,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3-3x2+ax(a∈R)
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≥2時,求函數(shù)y=|f(x)|在0≤x≤1上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)滿足f(x-2)•f(x)=-3,x∈[-1,1]時,f(x)=$\frac{1}{{2}^{x}}$+${∫}_{-1}^{1}$$\sqrt{1-{t}^{2}}$dt,則f(2014)=-1+$\frac{1}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanx=-1,求滿足下列條件的x值:
(1)x∈R;
(2)x∈(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的公差為d(d∈N*),等比數(shù)列{bn}的公比為q,若a2,a3,a5分別為{bn}的前三項,且d<q.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足:b1c1+b2c2+…+bncn=an,求數(shù)列{cnan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,平面PAC⊥平面ABC,AC⊥BC,△PAC為等邊三角形,PE∥CB,M,N分別是線段AE,AP上的動點,且滿足:$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ(0<λ<1).
(1)求證:MN∥平面ABC;
(2)當(dāng)λ=$\frac{1}{2}$時,求證:面CMN⊥面APE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sin(α-$\frac{π}{2}$+4kπ)=$\frac{1}{3}$,k∈Z且α∈(π,$\frac{3π}{2}$),求sinα、cosα、tanα.

查看答案和解析>>

同步練習(xí)冊答案