16.已知函數(shù)$f(x)={x^3}-{x^2}+({2\sqrt{2}-3})x+3-2\sqrt{2}$,f(x)與x軸依次交于點(diǎn)A、B、C,點(diǎn)P為f(x)圖象上的動點(diǎn),分別以A、B、C,P為切點(diǎn)作函數(shù)f(x)圖象的切線.
(1)點(diǎn)P處切線斜率最小值為2$\sqrt{2}$-$\frac{10}{3}$
(2)點(diǎn)A、B、C處切線斜率倒數(shù)和為0.

分析 (1)求出f(x)的導(dǎo)數(shù),配方,即可得到所求切線的斜率的最小值;
(2)由題意可設(shè)f(x)=(x-x1)(x-x2)(x-x3),求出導(dǎo)數(shù),分別求出點(diǎn)A、B、C處切線斜率,再求倒數(shù),化簡即可得到所求和.

解答 解:(1)函數(shù)$f(x)={x^3}-{x^2}+({2\sqrt{2}-3})x+3-2\sqrt{2}$,
導(dǎo)數(shù)為f′(x)=3x2-2x+2$\sqrt{2}$-3
=3(x-$\frac{1}{3}$)2+2$\sqrt{2}$-$\frac{10}{3}$,
當(dāng)x=$\frac{1}{3}$時(shí),切線的斜率取得最小值2$\sqrt{2}$-$\frac{10}{3}$;
(2)可令f(x)=(x-x1)(x-x2)(x-x3),
f′(x)=(x-x2)(x-x3)+(x-x1)[(x-x2)+(x-x3)],
f′(x1)=(x1-x2)(x1-x3),f′(x2)=(x2-x1)(x2-x3),
f′(x3)=(x3-x1)(x3-x2),
可得點(diǎn)A、B、C處切線斜率倒數(shù)和為$\frac{1}{f′({x}_{1})}$+$\frac{1}{f′({x}_{2})}$+$\frac{1}{f′({x}_{3})}$
=$\frac{1}{{x}_{1}-{x}_{2}}$($\frac{1}{{x}_{1}-{x}_{3}}$-$\frac{1}{{x}_{2}-{x}_{3}}$)+$\frac{1}{({x}_{3}-{x}_{1})({x}_{3}-{x}_{2})}$
=$\frac{1}{{x}_{1}-{x}_{2}}$•$\frac{{x}_{2}-{x}_{1}}{({x}_{1}-{x}_{3})({x}_{2}-{x}_{3})}$+$\frac{1}{({x}_{3}-{x}_{1})({x}_{3}-{x}_{2})}$
=-$\frac{1}{({x}_{3}-{x}_{1})({x}_{3}-{x}_{2})}$+$\frac{1}{({x}_{3}-{x}_{1})({x}_{3}-{x}_{2})}$=0.
故答案為:(1)2$\sqrt{2}$-$\frac{10}{3}$,(2)0.

點(diǎn)評 本題考查導(dǎo)數(shù)的概念和應(yīng)用:求切線的斜率,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式|x|•(1-2x)>0的解集是( 。
A.{x|x<$\frac{1}{2}$}B.{x|x<0或0<x<$\frac{1}{2}$}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知?a∈[1,2),?x0∈(0,1],使得$ln{x_0}+{e^a}>\frac{{a{x_0}}}{2}+\frac{a}{2}+m$,則實(shí)數(shù)m的取值范圍為(-∞,e-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某社區(qū)調(diào)查了老年大學(xué)全部48名學(xué)員參加書法班和演講班的情況,數(shù)據(jù)如表:(單位:人)
參加書法班未參加書法班
參加演講班85
未參加演講班233
(I)從該老年大學(xué)隨機(jī)選1名學(xué)員,求該學(xué)員至少參加上述一個班的概率;
(II)在既參加書法班又參加演講班的8名學(xué)員中,有5名男學(xué)員A1,A2,A3,A4,A5,3名女學(xué)員B1,B2,B3.現(xiàn)從這5名男學(xué)員和3名女學(xué)員中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若a2=b2+c2-bc,a=3,則△ABC的面積的最大值為(  )
A.$2\sqrt{3}$B.9C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖示,邊長為4的正方形ABCD與正三角形ADP所在平面互相垂直,M、Q分別是PC,AD的中點(diǎn).
(1)求證:PA∥面BDM
(2)求多面體P-ABCD的體積
(3)試問:在線段AB上是否存在一點(diǎn)N,使面PCN⊥面PQB?若存在,指出N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖給出了紅豆生長時(shí)間t(月)與枝數(shù)y(枝)的散點(diǎn)圖:那么“紅豆生南國,春來發(fā)幾枝.”的紅豆生長時(shí)間與枝數(shù)的關(guān)系用下列哪個函數(shù)模型擬合最好?( 。
A.二次函數(shù):y=2t2B.冪函數(shù):y=t3
C.指數(shù)函數(shù):y=2tD.對數(shù)函數(shù):y=log2t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)是一次函數(shù),且f(0)=1,f(1)=3,
(1)求函數(shù)f(x)的解析式.
(2)若g(x)=2f(x),且g(m2-2)<g(m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(cosα,-1),$\overrightarrow{n}$=(2,sinα),其中$α∈(0,\frac{π}{2})$,且$\overrightarrow{m}⊥\overrightarrow{n}$.
(1)求cos2α的值;
(2)若sin(α-β)=$\frac{\sqrt{10}}{10}$,且$β∈(0,\frac{π}{2})$,求角β.

查看答案和解析>>

同步練習(xí)冊答案