【題目】已知函數,
(1)當m=5時,求f(x)>0的解集;
(2)若關于的不等式f(x)≥2的解集是R,求m的取值范圍.
【答案】(1);(2)
【解析】試題分析:(I)當m=5時,原不等式可化為|x+1|+|x-2|>5,分三種情況去絕對值,對不等式加以討論,最后綜合即得到f(x)>0的解集;
(II)關于x的不等式f(x)≥2的解集是R,根據絕對值不等式的性質,可得|x+1|+|x-2|的最小值3大于或等于m+2,由此可得實數m的取值范圍.
試題解析:
(1)由題設知:|x+1|+|x-2|>5,不等式的解集是以下三個不等式組解集的并集:或或
解得f(x)>0的解集為(-∞,-2)∪(3,+∞).
(2)不等式f(x)≥2即|x+1|+|x-2|>m+2,
∵x∈R時,恒有|x+1|+|x-2|
≥|(x+1)-(x-2)|=3,
不等式|x+1|+|x-2|≥m+2解集是R,
∴m+2≤3,m的取值范圍是(-∞,1]
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,F(-1, 0)是橢圓的左焦點,過點F且方向向量為的光線,經直線反射后通過左頂點D.
(I)求橢圓的方程;
(II)過點F作斜率為的直線交橢圓于A, B兩點,M為AB的中點,直線OM (0為原點)與直線交于點P,若滿足,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018屆西藏拉薩市高三第一次模擬考試(期末)】如圖,四棱錐底面為等腰梯形, 且,點為中點.
(1)證明: 平面;
(2)若平面, ,直線與平面所成角的正切值為,求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:3x-2y-1=0,直線l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1)求直線l1∩l2≠的概率;
(2)求直線l1與l2的交點位于第一象限的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知甲、乙兩位同學8次數學單元測試的成績構成如下所示的莖葉圖,且甲同學成績的平均數比乙同學成績的平均數小2.
(1)求m的值以及乙同學成績的方差;
(2)若數學測試的成績高于85分(含85分),則視為優(yōu)秀.現對乙同學的成績進行深入分析,在乙同學的優(yōu)秀成績中任取2次成績,求至少有一次抽取的成績超過90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設公差大于0的等差數列{an}的前n項和為Sn,已知S3=15,且a1,a4,a13成等比數列,記數列 的前n項和為Tn.
(Ⅰ)求Tn;
(Ⅱ)若對于任意的n∈N*,tTn<an+11恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我校為了讓高一學生更有效率地利用周六的時間,在高一新生第一次摸底考試后采取周六到校自主學習,同時由班主任老師值班,家長輪流值班.一個月后進行了第一次月考,高一數學教研組通過系統抽樣抽取了名學生,并統計了他們這兩次數學考試的優(yōu)良人數和非優(yōu)良人數,其中部分統計數據如下:
(1)請畫出這次調查得到的列聯表;并判定能否在犯錯誤概率不超過的前提下認為周六到校自習對提高學生成績有效?
(2)從這組學生摸底考試中數學優(yōu)良成績中和第一次月考的數學非優(yōu)良成績中,按分層抽樣隨機抽取個成績,再從這個成績中隨機抽取個,求這個成績來自同一次考試的概率.
下面是臨界值表供參考:
(參考公式: ,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校400名學生在一次百米賽跑測試中,成績全部都在12秒到17秒之間,現抽取其中50個樣本,將測試結果按如下方式分成五組:第一組,第二組,…,第五組,如圖所示的是按上述分組方法得到的頻率分布直方圖.
(1)請估計該校400名學生中,成績屬于第三組的人數;
(2)請估計樣本數據的中位數(精確到0.01);
(3)若樣本第一組中只有一名女生,其他都是男生,第五組則只有一名男生,其他都是女生,現從第一、第五組中各抽取2名同學組成一個特色組,設其中男同學的人數為,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 、為橢圓的左右頂點,焦點到短軸端點的距離為2, 、為橢圓上異于、的兩點,且直線的斜率等于直線斜率的2倍.
(Ⅰ)求證:直線與直線的斜率乘積為定值;
(Ⅱ)求三角形的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com