已知函數(shù),討論的單調(diào)性.

時(shí),在內(nèi)單調(diào)遞增;時(shí),函數(shù)的增區(qū)間為,減區(qū)間為]

解析試題分析:,……………………………………………2分
①當(dāng)時(shí) 在內(nèi)單調(diào)遞增,
②當(dāng)時(shí)
,…………………8分
函數(shù)的增區(qū)間為…………………10分
減區(qū)間為]……………………………………12分
考點(diǎn):函數(shù)導(dǎo)數(shù)判定單調(diào)性
點(diǎn)評(píng):函數(shù)單調(diào)性與其導(dǎo)數(shù)的關(guān)系:若在某一區(qū)間上,則函數(shù)是增函數(shù);若,則函數(shù)是減函數(shù)。本題要對(duì)分情況討論,從而確定是否有極值點(diǎn),才能確定單調(diào)區(qū)間

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù),其中為常數(shù),且函數(shù)
的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行,求此時(shí)平行線的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),是否存在實(shí)數(shù),使函數(shù)在上遞減,在上遞增?若存在,求出所有值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù)=,求證:當(dāng)時(shí),有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(其中為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),設(shè)函數(shù)的3個(gè)極值點(diǎn)為,且.
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(其中,),且函數(shù)的圖象在     點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對(duì)任意的恒成立,求實(shí)數(shù)的值;
(3)在(2)的條件下,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的零點(diǎn)的集合為{0,1},且是f(x)的一個(gè)極值點(diǎn)。
(1)求的值;
(2)試討論過(guò)點(diǎn)P(m,0)與曲線y=f(x)相切的直線的條數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案