分析 (Ⅰ)拼接成底面EFGH的四個(gè)直角三角形必為全等的等腰直角三角形,從而EG⊥FH,EG⊥FH,EG⊥SO,由此能證明平面SEG⊥平面SFH.
(Ⅱ)過(guò)O作OM⊥SH交SH于M點(diǎn),連EM,證明∠EMO為二面角E-SH-F的平面角,即可求得結(jié)論.
解答 (1)證明:∵折后A,B,C,D重合于一點(diǎn)O,
∴拼接成底面EFGH的四個(gè)直角三角形必為全等的等腰直角三角形,
∴底面EFGH是正方形,故EG⊥FH,
∵在原平面EFGH是正方形,故EG⊥FH,
∵在原平面圖形中,等腰三角形△SEE′≌△SGG′,
∴SE=SG,∴EG⊥SO,
又∵SO、FH?平面SFH,SO∩FH=O,
∴EC⊥平面SFH,
又∵EG?平面SEC,∴平面SEG⊥平面SFH.…(6分)
(Ⅱ)解:過(guò)O作OM⊥SH交SH于M點(diǎn),連EM,
∵EO⊥平面SFH,
∴EO⊥SH,
∴SH⊥面EMO,
∴∠EMO為二面角E-SH-F的平面角.…(8分)
當(dāng)AE=$\frac{5}{2}$時(shí),即OE=$\frac{5}{2}$
Rt△SHO中,SO=5,SH=$\frac{5\sqrt{5}}{2}$,∴OM=$\frac{SO•OH}{SH}$=$\sqrt{5}$,
Rt△EMO中,EM=$\sqrt{E{O}^{2}+O{M}^{2}}$=$\frac{3\sqrt{5}}{2}$,
∴cos∠EMO=$\frac{OM}{EM}$=$\frac{2}{3}$,
∴所求二面角的余弦值為$\frac{2}{3}$. …(12分)
點(diǎn)評(píng) 本小題考查空間中直線與平面的位置關(guān)系、二面角的余弦值等基礎(chǔ)知識(shí),考查空間想象能力、推理論證能力及運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6π | B. | 12π | C. | 32π | D. | 36π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | -40 | C. | 80 | D. | -80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com