【題目】已知P為△ABC內(nèi)一點,且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于( )
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2
【答案】D
【解析】解:如圖:設D、E 分別為BC、AC的中點, ∵ =0,∴ ﹣ =﹣3( + ),
∴ =﹣3×2 =﹣6 ,
同理由( + )=﹣2( + ),即 2 =﹣2× ,
∴ =﹣ .∴P到BC的距離等于A到BC的距離的 ,
設△ABC的面積為S,則S2 = S.
P到AC的距離等于B到AC的距離的 ,
∴S3 = S.∴S1 =S﹣S2﹣S3 = S.
∴S1:S2:S3= S: S= S=3:1:2,
故選D.
根據(jù)已知的等式變形可得 =﹣6 , =﹣ ,從而得出P到BC的距離等于A到BC的距離的 ,P到AC的距離等于B到AC的距離的 .從而有S2 = S,S3 = S,S1 =S﹣S2﹣S3 = S即可解決問題.
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn為等比數(shù)列{an}的前n項和且S4=S3+3a3 , a2=9.
(1)求數(shù)列{an}的通項公式
(2)設bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設A、B分別為雙曲線 的左右頂點,雙曲線的實軸長為4 ,焦點到漸近線的距離為 .
(1)求雙曲線的方程;
(2)已知直線 與雙曲線的右支交于M、N兩點,且在雙曲線的右支上存在點D,使 ,求t的值及點D的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,我艇在A處發(fā)現(xiàn)一走私船在方位角45°且距離為12海里的B處正以每小時10海里的速度向方位角105°的方向逃竄,我艇立即以14海里/小時的速度追擊,求我艇追上走私船所需要的最短時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的離心率為 ,過焦點垂直與x軸的直線被橢圓E截得的線段長為 .
(1)求橢圓E的方程;
(2)斜率為k的直線l經(jīng)過原點,與橢圓E相交于不同的兩點M,N,判斷并說明在橢圓E上是否存在點P,使得△PMN的面積為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項公式;
(2)設數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點D為△ABC的邊BC上一點, =3 ,En(n∈N+)為邊AC上的點,滿足 = an+1 , =(4an+3) ,其中實數(shù)列{an}中an>0,a1=1,則{an}的通項公式為( )
A.32n﹣1﹣2
B.2n﹣1
C.4n﹣2
D.24n﹣1﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com