【題目】揚州大學數(shù)學系有6名大學生要去甲、乙兩所中學實習,每名大學生都被隨機分配到兩所中學的其中一所.
(1)求6名大學生中至少有1名被分配到甲學校實習的概率;
(2)設(shè),分別表示分配到甲、乙兩所中學的大學生人數(shù),記,求隨機變量的分布列和數(shù)學期望.
【答案】(1);(2)見解析.
【解析】試題分析:
⑴由題意結(jié)合對立事件概率公式可得6名大學生中至少有1名被分配到甲學校實習的概率為.
⑵由題意可得所有可能取值是0,2,4,6,結(jié)合概率公式計算可得,,,, 據(jù)此可得分布列,計算隨機變量的數(shù)學期望.
試題解析:
⑴記 “6名大學生中至少有1名被分配到甲學校實習” 為事件,則.
答:6名大學生中至少有1名被分配到甲學校實習的概率為.
⑵所有可能取值是0,2,4,6,記“6名學生中恰有名被分到甲學校實習”為事件(),則
,
,
,
,
所以隨機變量的概率分布為:
0 | 2 | 4 | 6 | |
所以隨機變量的數(shù)學期望.
答:隨機變量的數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐,底面為菱形,,為上的點,過的平面分別交,于點,,且平面.
(1)證明:;
(2)當為的中點,,與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬人次)的變化情況,從一個側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個判斷中,錯誤的是( )
A. 旅游總?cè)藬?shù)逐年增加
B. 2017年旅游總?cè)藬?shù)超過2015、2016兩年的旅游總?cè)藬?shù)的和
C. 年份數(shù)與旅游總?cè)藬?shù)成正相關(guān)
D. 從2014年起旅游總?cè)藬?shù)增長加快
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)若函數(shù)有兩個極值點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點,并要求與扇形弧相切于點.設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計.
(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;
(2)試確定的值,使得公路的長度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標方程為.
()求的極坐標方程與的直角坐標方程.
()若是上任意一點,過點的直線交于點,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的極坐標方程與曲線的直角坐標方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com