一個(gè)幾何體的三視圖如圖所示,其中網(wǎng)格紙上的小正方形的邊長(zhǎng)為1,則該幾何體的體積為
 
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:三視圖復(fù)原的幾何體是正四棱錐,利用三視圖的數(shù)據(jù),求出幾何體的體積即可.
解答: 解:三視圖復(fù)原的幾何體是底面為邊長(zhǎng)為5
2
的正方形,高為5正四棱錐,
所以幾何體的體積為
1
3
×(5
2
)2×5
=
250
3

故答案為:
250
3
點(diǎn)評(píng):本題考查簡(jiǎn)單幾何體的三視圖,幾何體的體積的求法,考查空間想象能力與計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
2+x
x-1
<0的解集為A,關(guān)于x的不等式(
1
2
)
2x
>2-a-x(a∈R)解集為B,全集U=R,求使∁UA∩B=B的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求過點(diǎn)M(2,-1)且與圓x2+y2-2x+10y=0同心的圓C的方程,
(2)求圓C過點(diǎn)M的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c,d∈R,給出下列命題:
①若ac>bc,則a>b;
②若a>b,c>d,則a+c>b+d;
③若a>b,c>d,則ac>bd;
④若ac2>bc2,則a>b.
其中真命題的序號(hào)是( 。
A、①②B、②④
C、①②④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)在以O(shè)為球心的球面上,且∠B=90°,BC=1,AC=3,已知三棱錐O-ABC的體積為
14
6
,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-3,1),直線OB的傾斜角為45°,且|OB|=
2

(Ⅰ)求點(diǎn)B的坐標(biāo)及線段AB的長(zhǎng)度;
(Ⅱ)在平面直角坐標(biāo)系xOy中,取1厘米為單位長(zhǎng)度.現(xiàn)有一質(zhì)點(diǎn)P以1厘米/秒的速度從點(diǎn)B出發(fā),沿傾斜角為60°的射線BC運(yùn)動(dòng),另一質(zhì)點(diǎn)Q同時(shí)以
2
厘米/秒的速度從點(diǎn)A出發(fā)作直線運(yùn)動(dòng),如果要使得質(zhì)點(diǎn)Q與P會(huì)合,那么需要經(jīng)過多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義某種運(yùn)算⊕,a⊕b的運(yùn)算原理如圖所示,設(shè)S=1⊕x,x∈[-2,2],則輸出的S的最大值與最小值的差為( 。
A、2B、-1C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-1的值域是(  )
A、[-1,+∞)
B、R
C、[0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P:x≥3或x≤1,Q:x2-3x+2≥0,則“非P”是“非Q”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案