某電視臺舉辦青年歌手大獎賽,有10名評委打分,已知甲、乙兩名選手演唱后的打分情況如莖葉圖所示:

(Ⅰ)從統(tǒng)計的角度,你認為甲與乙比較,演唱水平怎樣?
(Ⅱ)現(xiàn)場有3名點評嘉賓A、B、C,每位選手可以從中選2位進行指導,若選手選每位點評嘉賓的可能性相等,求甲乙兩選手選擇的點評嘉賓恰重復一人的概率.
考點:莖葉圖,古典概型及其概率計算公式
專題:綜合題,概率與統(tǒng)計
分析:(Ⅰ)由莖葉圖可得:
.
X
=87.5
,
.
X
=86.7
,
.
X
.
X
,即可得出結(jié)論;
(Ⅱ)求出所有基本事件,其中,甲乙兩選手選擇的點評嘉賓恰重復一人包含6個基本事件,即可求出甲乙兩選手選擇的點評嘉賓恰重復一人的概率.
解答: 解:(Ⅰ)由莖葉圖可得:
.
X
=87.5
.
X
=86.7
,
.
X
.
X
,
所以甲演唱水平更高一點,但甲的方差較大,即評委對甲的水平認可存在較大的差異       …(5分)
(Ⅱ)依題意,共有9個基本事件:

其中,甲乙兩選手選擇的點評嘉賓恰重復一人包含6個基本事件.
所以,所求概率為P=
6
9
=
2
3
.                   …(12分)
點評:本題考查概率的計算,考查莖葉圖,確定基本事件的個數(shù)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列說法中:
①y=ax+t(t∈R)的圖象可以由y=ax的圖象平移得到(a>0且a≠1);
②y=2x與y=log2x的圖象關(guān)于y軸對稱;
③方程log5(2x+1)=log5(x2-2)的解集為{-1,3};
④函數(shù)y=ln(1+x)-ln(1-x)為奇函數(shù);
你認為說法正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入值x∈[-2,2],則輸出值y的取值范圍是( 。
A、[-2,1]
B、[-2,2]
C、[-1,4]
D、[-4,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列選項一定正確的是( 。
A、若a>b,則ac>bc
B、若
a
b
,則a>b
C、若a2>b2,則a>b
D、若
1
a
1
b
,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C的對邊分別為a,b,c,且a,b,c依次成等差數(shù)列.
(Ⅰ)若向量
m
=(3,sinB)與
n
=(2,sinC)共線,求cosA的值;
(Ⅱ)若ac=8,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,對任意的k∈N*,a2k-1、a2k、a2k+1成等比數(shù)列,公比為qk;a2k、a2k+1、a2k+2成等差數(shù)列,公差為dk,且d1=2.
(1)寫出數(shù)列{an}的前四項;
(2)設(shè)bk=
1
qk-1
,求數(shù)列{bk}的通項公式;
(3)求數(shù)列{dk}的前k項和Dk

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
,甲、乙、丙三位同學在研究此函數(shù)的性質(zhì)時分別給出下列命題:
甲:函數(shù)f(x)為偶函數(shù);
乙:函數(shù)f(x)的值域為(-1,1);
丙:若x1≠x2則一定有f(x1)≠f(x2
你認為上述三個命題中正確的個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px的焦點F與橢圓
x2
9
+
y2
5
=1的右焦點重合,其準線與x軸相交于點M,點A在此拋物線上,且|AM|=
2
|AF|,則△AMF的內(nèi)切圓半徑的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點都在拋物線y2=2px(p>0)上,且拋物線的焦點F滿足
FA
+
FB
+
FC
=
0
,若BC邊上的中線所在直線l的方程為mx+ny-m=0(m,n為常數(shù)且m≠0).
(Ⅰ)求p的值;
(Ⅱ)O為拋物線的頂點,△OFA、△OFB、△OFC的面積分別記為S1、S2、S3,求證:S12+S22+S32為定值.

查看答案和解析>>

同步練習冊答案