設(shè)=(-3,m),=(4,3),若的夾角是鈍角,則實數(shù)m的取值范圍是

[  ]
A.

m≠4且m≠-

B.

m<4且m≠-

C.

m>4

D.

m<4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:022

設(shè)M={1, 2, (m2-3m-1)+(m2-5m-6)i}   N={-1, 3}, M∩N={3}, 則實數(shù)m的值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省潮州金山中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試卷 題型:044

若實數(shù)m,n為關(guān)于x的一元二次方程Ax2+Bx+C=0的兩個實數(shù)根,則有Ax2+Bx+C=A(x-m)(x-n),由系數(shù)可得:m+n=-,且m·n=.設(shè)x1,x2,x3為關(guān)于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三個實數(shù)根.

(1)寫出三次方程的根與系數(shù)的關(guān)系;即x1+x2+x3=_________;x1x2+x2x3+x3x1=_________;x1·x2·x3=_________

(2)若a,b,c均大于零,試證明:x1,x2,x3都大于零

(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β處取得極值,且-1<α<β<1,求方程f(x)=0三個實根兩兩不相等時,實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={1,2,3,4},M={1,2,3},N={2,3,4},則∁U(MN)=(  )

A.{1,2}                    B.{2,3}

C.{2,4}                    D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(x∈R),其中m>0.

(1)當(dāng)m=1時,求曲線yf(x)在(1,f(1))點處的切線的方程;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;

(3)已知函數(shù)g(x)=f(x)+有三個互不相同的零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊答案