【題目】有下列五個命題: ①平面內(nèi),到一定點的距離等于到一定直線距離的點的集合是拋物線;
②平面內(nèi),定點F1、F2 , |F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是橢圓;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件;
④“若﹣3<m<5,則方程 =1是橢圓”.
⑤已知向量 , , 是空間的一個基底,則向量 + , ﹣ , 也是空間的一個基底.
其中真命題的序號是 .
【答案】③⑤
【解析】解:①平面內(nèi),到一定點的距離等于到一定直線(定點不在定直線上)距離的點的集合是拋物線, 若定點在定直線上,則動點的集合是過定點垂直于定直線的一條直線,故①錯;
②平面內(nèi),定點F1、F2 , |F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是線段F1F2 ,
若|MF1|+|MF2|>|F1F2|,則點的軌跡是橢圓,故②錯;
③在△ABC中,∠A,∠B,∠C三個角成等差數(shù)列,則2∠B=∠A+∠C=180°﹣∠B,
∠B=60°,若∠B=60°,則2∠B=∠A+∠C=120°,即∠B﹣∠A=∠C﹣∠A,
即∠A,∠B,∠C三個角成等差數(shù)列,故③正確;
④若﹣3<m<5,則方程 =1,m+3>0,5﹣m>0,若m=1,則x2+y2=4表示圓,
若m≠1,則表示橢圓,故④錯;
⑤已知向量 , , 是空間的一個基底,即它們非零向量且不共線,
則向量 + , ﹣ , 也是空間的一個基底,故⑤正確.
所以答案是:③⑤
【考點精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù)(千冊) | 2 | 3 | 4 | 5 | 8 |
單冊成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計算結(jié)果精確到0.1);
印刷冊數(shù)(千冊) | 2 | 3 | 4 | 5 | 8 | |
單冊成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場調(diào)查,新需求量為8千冊(概率0.8)或10千冊(概率0.2),若印刷廠以每冊5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊能獲得更多利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=2py(p>0)與直線2x﹣y+1=0交于A,B兩點, ,點M在拋物線上,MA⊥MB.
(1)求p的值;
(2)求點M的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時,f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓, 在拋物線上,圓過原點且與的準(zhǔn)線相切.
(Ⅰ) 求的方程;
(Ⅱ) 點,點(與不重合)在直線上運動,過點作的兩條切線,切點分別為, .求證: (其中為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c,且f(﹣3)=f(1),f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)﹣(4+2a)x+2,x∈[1,2],求函數(shù)g(x)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張邱建算經(jīng)》是中國古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹, 竹尾風(fēng)割斷, 剩下三十節(jié),一節(jié)一個圈. 頭節(jié)高五寸①,頭圈一尺三②.逐節(jié)多三分③,逐圈少分三④. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第一節(jié)的高度為尺;②第一圈的周長為尺;③每節(jié)比其下面的一節(jié)多尺;④每圈周長比其下面的一圈少尺) 問:此民謠提出的問題的答案是
A. 尺 B. 尺
C. 尺 D. 尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣2ax)(a>0且a≠1)滿足對任意的x1 , x2∈[3,4],且x1≠x2時,都有 >0成立,則實數(shù)a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com