F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),以O(shè)為圓心,OF1為半徑的圓與雙曲線在第一象限的交點(diǎn)為P,若三角形PF1F2的面積為3a2,則雙曲線離心率為( 。
A、
2
B、
3
C、
6
2
D、2
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先設(shè)F1F2=2c,由題意知△F1F2P是直角三角形,進(jìn)而在RT△PF1F2中結(jié)合雙曲線的定義和△PF1F2的面積,進(jìn)而根據(jù)雙曲線的簡(jiǎn)單性質(zhì)求得a,c之間的關(guān)系,則雙曲線的離心率可得.
解答: 解:設(shè)F1F2=2c,由題意知△F1F2P是直角三角形,
∴F1P2+F2P2=F1F22,
又根據(jù)雙曲線的定義得:F1P-F2P=2a,
平方得:F1P2+F2P2-2F1P×F2P=4a2
 從而得出F1F22-2F1P×F2P=4a2
∴F1P×F2P=2(c2-a2
又△PF1F2的面積等于3a2
1
2
F1P×F2P=3a2
2(c2-a2)=6a2
∴c=2a,
∴雙曲線的離心率e=
c
a
=2.
故選:D.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生綜合分析問(wèn)題和數(shù)形結(jié)合的思想的運(yùn)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)在定義域內(nèi)可導(dǎo),y=f(x)的圖象如圖所示,則導(dǎo)函數(shù)f′(x)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|6x+a|,若不等式f(x)≥2的解集為{x|x≥-
1
6
或x≤-
5
6
},則實(shí)數(shù)a的值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

令P(x):ax2+3x+2>0,若對(duì)任意x∈R,P(x)是真命題,則實(shí)數(shù)a的取值范圍是(  )
A、a>0
B、a>
9
8
C、a<0
D、a=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從0,1,2,…,9這十個(gè)數(shù)字中,任取兩個(gè)不同的數(shù)字相加,其和為偶數(shù)的不同取法有多少種?( 。
A、20B、18C、16D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是不同的直線,α,β是不重合的平面,下列命題正確的是( 。
A、若m∥α,則m平行于平面α內(nèi)的任意一條直線
B、若α∥β,m?α,n?β,則m∥n
C、若α∥β,m?α,則m∥β.
D、若m?α,n?α,m∥β,n∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)m滿足0<m<4,則曲線
x2
12
-
y2
4-m
=1與曲線
x2
12-m
-
y2
4
=1的( 。
A、實(shí)半軸長(zhǎng)相等
B、虛半軸長(zhǎng)相等
C、離心率相等
D、焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1≠0,2an=a1(1+Sn)(n∈N*),Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣M=
1
b
的一個(gè)特征值λ1=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
.
1
1
.

(1)求a,b的值;
(2)求曲線C:x2+4xy+13y2=1在M對(duì)應(yīng)的變換作用下的新曲線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案