【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:

抽取順序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得=xi=9.97,s==≈0.212,≈18.439,(xi)(i﹣8.5)=﹣2.78,

 其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.

 (1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)

 過程的進行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地

 變大或變小).

 (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在﹣3s,+3s)之外的零件,就認為這條生產(chǎn)線在這一天

 的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.

、購倪@一天抽檢的結(jié)果看,是否需對當天的生產(chǎn)過程進行檢查?

、谠﹣3s,+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的

 均值與標準差.(精確到0.01)

附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=,≈0.09.

【答案】(1)認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小;

(2)①需對當天的生產(chǎn)過程進行檢查;②.

【解析】

(1)代入數(shù)據(jù)計算,比較|r|與0.25的大小作出結(jié)論;

(2)(i)計算合格零件尺寸范圍,得出結(jié)論;

(ii)代入公式計算即可.

(1)因為1,2,3,…,16的平均數(shù)為8.5,

所以樣本(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)

r=≈-0.178,

所以|r|=0.178<0.25,

所以可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。

(2)①-3s=9.97-3×0.212=9.334,+3s=9.97+3×0.212=10.606,

第13個零件的尺寸為9.22,9.22<9.334,所以從這一天抽檢的結(jié)果看,需對當天的生產(chǎn)過程進行檢查.

②剔除9.22,這條生產(chǎn)線當天生產(chǎn)的零件尺寸的均值為=10.02,

標準差s=≈0.09.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與拋物線相切于點.

(1)求實數(shù)的值;

(2)求以點為圓心,且與拋物線的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,則方程實數(shù)根的個數(shù)為 ( )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下關(guān)于線性回歸的判斷,正確的個數(shù)是(  )

①若散點圖中所有點都在一條直線附近,則這條直線為回歸直線;

②散點圖中的絕大多數(shù)都線性相關(guān),個別特殊點不影響線性回歸,如圖中的A,B,C點;

③已知直線方程為=0.50x-0.81,則x=25時,y的估計值為11.69;

④回歸直線方程的意義是它反映了樣本整體的變化趨勢.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=log3(x2+2x﹣8)的定義域為A,函數(shù)g(x)=x2+(m+1)x+m.
(1)若m=﹣4時,g(x)≤0的解集為B,求A∩B;
(2)若存在 使得不等式g(x)≤﹣1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +x.
(1)若函數(shù)f(x)的圖象在(1,f(1))處的切線經(jīng)過點(0,﹣1),求a的值;
(2)是否存在負整數(shù)a,使函數(shù)f(x)的極大值為正值?若存在,求出所有負整數(shù)a的值;若不存在,請說明理由;
(3)設(shè)a>0,求證:函數(shù)f(x)既有極大值,又有極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1 , A2 , A3 , …,An為集合A的一種拆分,所有拆分的個數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求分數(shù)在[120,130)內(nèi)的頻率;

2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100110)的中點值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;

3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點P( ,1),直線l的參數(shù)方程為t為參數(shù))若以O(shè)為極點,以O(shè)x為極軸,選擇相同的單位長度建立極坐標系,則曲線C的極坐標方程為ρ= cos(θ-

(Ⅰ)求直線l的普通方程和曲線C的直角坐標方程;

(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求點P到A,B兩點的距離之積.

查看答案和解析>>

同步練習冊答案