雙曲線y=
1
x
的焦距為(  )
A、
2
B、2
2
C、2
D、4
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的實軸與雙曲線的交點,求出a,利用雙曲線的漸近線方程求出焦距即可.
解答: 解:因為雙曲線的實軸為y=x,所以雙曲線與實軸的交點為:(1,1),
所以a=
2
,2a=2
2

因為雙曲線的漸近線是坐標軸,是等軸雙曲線,所以雙曲線的離心率為
2
,
所以c=2,2c=4.
故選:D.
點評:題考查雙曲線的基本性質(zhì)的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的是( 。
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={-1,0,1},B={0,1,2},則A∩B(  )
A、{-1,0,1,2}
B、{1,2}
C、{0,1}
D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上且周期為2的函數(shù),當x∈[0,2)時,f(x)=||2x-1|-1|,若函數(shù)y=f(x)-a在區(qū)間[-2,3]上有8個零點(互不相同),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
ax2+2ax+1
的值域為[0,+∞),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(
7
2
,4)
,動點P在拋物線C:y2=2x上,點P在y軸上的射影是M,則|PA|+|PM|的最小值是( 。
A、
11
2
B、4
C、
9
2
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)短軸的兩個頂點與右焦點的連線構成等邊三角形,直線3x+4y+6=0與以橢圓C的上頂點為圓心,以橢圓C的長半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)橢圓C與x軸負半軸交于點A,過點A的直線AM、AN分別與橢圓C交于M、N兩點,kAM、kAN分別為直線AM、AN的斜率,kAM•kAN=-
3
4
,求證:直線MN過定點,并求出該定點坐標;
(3)在(2)的條件下,求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的導函數(shù)為f′(x),對任意x∈R都有f(x)>f′(x)成立,則( 。
A、3f(ln2)>2f(ln3)
B、3f(ln2)=2f(ln3)
C、3f(ln2)<2f(ln3)
D、3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的“莖葉圖”表示的數(shù)據(jù)中,眾數(shù)和中位數(shù)分別( 。
A、23和26
B、31和26
C、24和30
D、26和30

查看答案和解析>>

同步練習冊答案