如圖,AB為半徑為2的圓O的直徑,CD為垂直于AB的一條弦,垂足為E,弦BM與CD交于點(diǎn)F.則AC2+BF•BM=
 
考點(diǎn):與圓有關(guān)的比例線段
專題:直線與圓
分析:連結(jié)AM、AC、BC,由題設(shè)條件推導(dǎo)出A、M、F、E四點(diǎn)共圓,△ACB∽△AEC,從而得到AC2+BF•BM=4BE+4AE,由此能求出結(jié)果.
解答: 解:連結(jié)AM、AC、BC,
∵AB為半徑為2的圓O的直徑,∴AM⊥BM,AC⊥BC,
∵CD為垂直于AB的一條弦,垂足為E,弦BM與CD交于點(diǎn)F.
∴∠AMF+∠AEF=180°,
∴A、M、F、E四點(diǎn)共圓,
∴BF•BM=BE•BA=4BE,
∵AC⊥BC,CE⊥AB,
∴△ACB∽△AEC,∴
AC
AE
=
AB
AC
,
∴AC2=AE•AB=4AE,
∴AC2+BF•BM=4BE+4AE=4AB=16.
故答案為:16.
點(diǎn)評:本題考查與圓有關(guān)的比例線段的求法,是中檔題,解題時(shí)要注意數(shù)形結(jié)合思想的合理運(yùn)用,注意切割線定理的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1-an=2,a1=2,等比數(shù)列{bn}滿足b1=a1,b4=a8
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足條件
y≥2|x|-1
y≤x+1
,則z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在不等式組
y≥x
x≥0
x+y≤2
所確定的平面區(qū)域內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P的坐標(biāo)滿足x2+y2≤2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有兩個(gè)命題:①方程x2+ax+9=0沒有實(shí)數(shù)根;②實(shí)數(shù)a為非負(fù)數(shù).如果這兩個(gè)命題中有且只有一個(gè)是真命題,那么實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1棱長為1,點(diǎn)M是BC1的中點(diǎn),P是BB1一動(dòng)點(diǎn),則(AP+MP)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有
 

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④一組數(shù)據(jù)的方差越大,說明這組數(shù)據(jù)的波動(dòng)越大.
⑤向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+2+(-1)nan=2,記Sn是數(shù)列{an}的前n項(xiàng)和,則S60=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,將支出分區(qū)間[20,30)、[30,40)、[40,50)、[50,60)進(jìn)行統(tǒng)計(jì),現(xiàn)抽出了一個(gè)容量為n的樣本,其頻率分布直方圖如圖所示,其中支出在[50,60)元的同學(xué)有24人,則n的值為( 。
A、80B、800
C、72D、720

查看答案和解析>>

同步練習(xí)冊答案