(1)求極坐標(biāo)方程ρ2cos2θ=16的直角坐標(biāo)方程.
(2)求直角坐標(biāo)方程y2=12x的極坐標(biāo)方程.
考點:簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:利用x=ρcosθ,y=ρsinθ即可實現(xiàn)極坐標(biāo)與直角坐標(biāo)的互化.
解答: 解:(1)極坐標(biāo)方程ρ2cos2θ=16化為ρ2(cos2θ-sin2θ)=16,∴x2-y2=16,即為直角坐標(biāo)方程;
(2)由直角坐標(biāo)方程y2=12x可得(ρsinθ)2=12ρcosθ,化為ρsin2θ=12cosθ,即為極坐標(biāo)方程.
點評:本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種汽車購車時費用為10萬元,每年保險、汽油等費用為0.9萬元;汽車的維修費用各年為:第一年0.2萬元,以后每年以0.2萬元的增量逐年遞增.
(1)寫出該種汽車使用n年后總費用Sn的表達式
(2)問這種汽車使用多少年報廢最合算(平均費用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
4
)圖象的最小正周期是π.
(1)求ω;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y(tǒng)=f(x)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于D.E,F(xiàn)分別為弦AB與弦AC上的點,B,E,F(xiàn),C四點共圓,且BC•AE=DC•AF.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B,E,F(xiàn),C四點的圓的半徑與△ABC外接圓半徑的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點M(1,
3
2
),且右焦點為F2(1,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P(x0,y0)是橢圓C上的一個動點,過F2作與PF2垂直的直線l2,直線l2與直線l1
x0x
a2
+
y0y
b2
=0相交于點Q,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個頂點與拋物線x2=4
2
y的焦點重合,F(xiàn)1,F(xiàn)2分布是橢圓的左、右焦點,離心率e=
3
3
,過橢圓右焦點F2的直線l與橢圓C交于M,N兩點,O為坐標(biāo)原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)
OM
ON
=-1時,求直線l的方程;
(Ⅲ)若AB是橢圓C經(jīng)過原點O的弦,MN∥AB,是否存在常數(shù)λ,使|AB|=λ
|MN|
?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinx+cosx,a∈R;
(Ⅰ)求在點(
π
2
,1)的切線方程;
(Ⅱ)若a=f′(
π
2
),求f(
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足Sn=an+1-2n+1+1,(n∈N*),且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=
an+1-1
an+1+2
,數(shù)列{bn}的前n項和為Tn,證明:對一切正整數(shù)n,都有n-
3
2
Tn<n-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3 x2-2x的值域是
 

查看答案和解析>>

同步練習(xí)冊答案