設(shè)函數(shù)f(x)=sin(ωx+
π
4
)圖象的最小正周期是π.
(1)求ω;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y(tǒng)=f(x)的圖象?
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)的周期性及其求法,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由條件利用正弦函數(shù)的周期性,求得ω的值.
(2)由(1)可得f(x)=sin(2x+
π
4
),令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.
(3)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:(1)根據(jù)函數(shù)f(x)=sin(ωx+
π
4
)圖象的最小正周期是
ω
=π,可得ω=2.
(2)由(1)可得f(x)=sin(2x+
π
4
),令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈z,
求得 kπ-
8
≤x≤kπ+
π
8
,故函數(shù)的增區(qū)間為[kπ-
8
,kπ+
π
8
],k∈z.
(3)把函數(shù)y=sinx的圖象向左平移
π
4
個(gè)單位,可得y=sin(x+
π
4
)圖象;
再把所得圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="lb7jdp5" class="MathJye">
1
2
倍,縱坐標(biāo)不變,可得f(x)=sin(2x+
π
4
)的圖象.
點(diǎn)評(píng):本題主要考查正弦函數(shù)的周期性、單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx,g(x)=mx-
x3
6
(m∈R);
(1)求曲線y=f(x)在點(diǎn)P(
π
4
,f(
π
4
))處的切線方程;
(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
(3)若m=1,證明:當(dāng)x>0時(shí),f(x)<g(x)+
x3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長(zhǎng)為3的正△ABC中,E,F(xiàn)分別在AB,AC邊上且AE=CF=1,(如圖1)現(xiàn)將△AEF沿EF折起到△A1EF的位置,使面A1EF⊥面BEF(如圖2)

(1)求證:A1E⊥CF
(2)若點(diǎn)P在BC邊上,且CP=1,連結(jié)A1B,A1P,求直線A1E與平面A1BP所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為鈍角的直線L過點(diǎn)(1,1),點(diǎn)(4,2)到直線L的距離為
5
,
(Ⅰ)求直線L的方程;
(Ⅱ)是否存在實(shí)數(shù)m使圓x2+y2+x-6y+m=0和直線L交于P,Q兩點(diǎn),且OP⊥OQ(O為坐標(biāo)原點(diǎn)),若存在,求m的值.若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于t的方程t2-zt+4+3i=0(z∈C)有實(shí)數(shù)解,
(1)設(shè)z=5+ai(a∈R),求a的值.
(2)設(shè)z=a+bi(a,b∈R),求|z|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(πx+φ)(φ∈(0,π)的一條對(duì)稱軸為x=
1
6

(Ⅰ)求φ的值,并求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)f(x)與x軸在原點(diǎn)右側(cè)的交點(diǎn)橫坐標(biāo)從左到右組成一個(gè)數(shù)列{an},求數(shù)列{
1
anan+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某年級(jí)共6個(gè)班,舉行足球賽.
(Ⅰ)若先從6個(gè)班中隨機(jī)抽取兩個(gè)班舉行比賽,則恰好抽中甲班與乙班的概率是多少?
(Ⅱ)若6個(gè)班平均分成兩組,則甲班與乙班恰好在同一組的概率是多少?
(Ⅲ)若6個(gè)班之間進(jìn)行單循環(huán)賽,規(guī)定贏一場(chǎng)得2分,平一場(chǎng)得1分,輸一場(chǎng)得0分.假定任意兩班比賽,贏、平、輸?shù)母怕识枷嗟,求最終甲班得8分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求極坐標(biāo)方程ρ2cos2θ=16的直角坐標(biāo)方程.
(2)求直角坐標(biāo)方程y2=12x的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x-4|+1,若不等式f(x)≤ax的解集非空,求a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案