分析 根據A、M、B三點共線,可得存在實數(shù)μ使得$\overrightarrow{AE}$=μ$\overrightarrow{EB}$ 成立,化簡整理得 $\overrightarrow{CE}$=$\frac{1}{1+μ}$$\overrightarrow{CA}$+$\frac{μ}{1+μ}$$\overrightarrow{CB}$,結合已知等式建立關于λ、μ的方程組,解之即可得到實數(shù)λ的值.
解答 解:∵△ABC中,E是AB邊所在直線上任意一點,
∴存在實數(shù)μ,使得$\overrightarrow{AE}$=μ$\overrightarrow{EB}$,即$\overrightarrow{CE}$-$\overrightarrow{CA}$=μ($\overrightarrow{CB}$-$\overrightarrow{CE}$),
化簡得 $\overrightarrow{CE}$=$\frac{1}{1+μ}$$\overrightarrow{CA}$+$\frac{μ}{1+μ}$$\overrightarrow{CB}$,
∵$\overrightarrow{CE}$=-$\overrightarrow{CA}$+λ$\overrightarrow{DA}$=-$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,∴結合平面向量基本定理,得$\left\{\begin{array}{l}{\frac{1}{1+μ}=-1}\\{\frac{μ}{1+μ}=λ}\end{array}\right.$,
解之得λ=2,μ=-2,
故答案為:2.
點評 本題給出A、M、B三點共線,求用向量$\overrightarrow{CA}$、$\overrightarrow{CB}$表示$\overrightarrow{CE}$的表達式,著重考查了平面向量的線性運算和平面向量基本定理等知識,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{3}$ | C. | 3 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | 等邊三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com