已知點M是曲線y=x3-2x2+3x+1上任意一點,曲線在M處的切線為l,求:(1)斜率最小的切線方程;

(2)切線l的傾斜角α的取值范圍.


解:(1)y′=x2-4x+3=(x-2)2-1≥-1,

∴當x=2時,y′=-1,y=,

∴斜率最小的切線過(2,),斜率k=-1,

∴切線方程為x+y-=0.

(2)由(1)得k≥-1,

∴tan α≥-1,∴α∈[0,)∪[,π).


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:


若y=是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),則整數(shù)a的值是   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)a>0且-2<<-1;

(2)函數(shù)y=f(x)在(0,1)內(nèi)有兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.

(1)寫出每戶每月用水量x(噸)與支付費用y(元)的函數(shù)關(guān)系;

(2)該地一家庭記錄了去年12個月的月用水量(x∈N*)如表:

月用水量x(噸)

3

4

5

6

7

頻數(shù)

1

3

3

3

2

請你計算該家庭去年支付水費的月平均費用(精確到1元);

(3)今年干旱形勢仍然嚴峻,該地政府號召市民節(jié)約用水,如果每個月水費不超過12元的家庭稱為“節(jié)約用水家庭”,隨機抽取了該地100戶的月用水量作出如下統(tǒng)計表:

月用水量x(噸)

1

2

3

4

5

6

7

頻數(shù)

10

20

16

16

15

13

10

據(jù)此估計該地“節(jié)約用水家庭”的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


若曲線y=2x2的一條切線l與直線x+4y-8=0垂直,則切線l的方程為    

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


函數(shù)y=(3-x2)ex的單調(diào)遞增區(qū)間是(   )

(A)(-∞,0)  (B)(0,+∞)

(C)(-∞,-3)和(1,+∞)    (D)(-3,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


直線y=a與函數(shù)f(x)=x3-3x的圖象有相異的三個公共點,則a的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知曲線y=x2與直線y=kx(k>0)所圍成的曲邊圖形的面積為,則k=    

查看答案和解析>>

同步練習冊答案