【題目】在單位圓O:x2+y2=1上任取一點(diǎn)P(x,y),圓O與x軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為x=f(θ),y=g(θ),則下列說(shuō)法正確的是( 。
A.x=f(θ)是偶函數(shù),y=g(θ)是奇函數(shù)
B.x=f(θ)在為增函數(shù),y=g(θ)在為減函數(shù)
C.f(θ)+g(θ)≥1對(duì)于恒成立
D.函數(shù)t=2f(θ)+g(2θ)的最大值為
【答案】AC
【解析】
,由題可知,,,根據(jù)正弦函數(shù)和余弦函數(shù)的奇偶性,可判斷選項(xiàng);
,根據(jù)正弦函數(shù)和余弦函數(shù)的單調(diào)性,可判斷選項(xiàng);
,先利用輔助角公式可得,再結(jié)合正弦函數(shù)的值域即可得解;
,,,,先對(duì)函數(shù)求導(dǎo),從而可知函數(shù)的單調(diào)性,進(jìn)而可得當(dāng),時(shí),函數(shù)取得最大值,結(jié)合正弦的二倍角公式,代入進(jìn)行運(yùn)算即可得解.
解:由題可知,,,即正確;
在上為增函數(shù),在上為減函數(shù);在上為增函數(shù),即錯(cuò)誤;
,,,,即正確;
函數(shù),則,
令,則;令,則,
函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,當(dāng)即,時(shí),函數(shù)取得極大值,為,
又當(dāng)即,時(shí),,所以函數(shù)的最大值為,即錯(cuò)誤.
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)在[1,2]上有且僅有3個(gè)零點(diǎn),其圖象關(guān)于點(diǎn)和直線x對(duì)稱,給出下列結(jié)論:
①;
②函數(shù)f(x)在[0,1]上有且僅有3個(gè)極值點(diǎn);
③函數(shù)f(x)在上單調(diào)遞增;
④函數(shù)f(x)的最小正周期是2.
其中所有正確結(jié)論的編號(hào)是( )
A.②③B.①④C.②③④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人口平均預(yù)期壽命是綜合反映人們健康水平的基本指標(biāo).年第六次全國(guó)人口普查資料表明,隨著我國(guó)社會(huì)經(jīng)濟(jì)的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國(guó)人口平均預(yù)期壽命繼續(xù)延長(zhǎng),國(guó)民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國(guó)平均預(yù)期壽命變化情況,依據(jù)此圖,下列結(jié)論錯(cuò)誤的是( )
A.男性的平均預(yù)期壽命逐漸延長(zhǎng)
B.女性的平均預(yù)期壽命逐漸延長(zhǎng)
C.男性的平均預(yù)期壽命延長(zhǎng)幅度略高于女性
D.女性的平均預(yù)期壽命延長(zhǎng)幅度略高于男性
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線是過(guò)點(diǎn)的動(dòng)直線,當(dāng)與圓相切時(shí),同時(shí)也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn)A、B,面積為,面積為,當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長(zhǎng)為1的等邊三角形,已知四面體ABCD的四個(gè)頂點(diǎn)都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“未來(lái)肯定是非接觸的,無(wú)感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日?qǐng)?bào)記者.相對(duì)于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開二維碼也需要時(shí)間和手機(jī)信號(hào).刷臉支付將會(huì)替代手機(jī),成為新的支付方式.某地從大型超市門口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如表列聯(lián)表:
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為使用刷臉支付與性別有關(guān)?
(2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎(jiǎng)活動(dòng),抽獎(jiǎng)活動(dòng)規(guī)則如下:“一等獎(jiǎng)”中獎(jiǎng)概率為0.25,獎(jiǎng)品為10元購(gòu)物券張(,且),“二等獎(jiǎng)”中獎(jiǎng)概率0.25,獎(jiǎng)品為10元購(gòu)物券兩張,“三等獎(jiǎng)”中獎(jiǎng)概率0.5,獎(jiǎng)品為10元購(gòu)物券一張,每位顧客是否中獎(jiǎng)相互獨(dú)立,記參與抽獎(jiǎng)的兩位顧客中獎(jiǎng)購(gòu)物券金額總和為元,若要使的均值不低于50元,求的最小值.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求曲線的參數(shù)方程與直線的普通方程;
(Ⅱ)設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)和點(diǎn)為直線上的點(diǎn),且.求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為4,且過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)的直線l交橢圓C于兩點(diǎn),過(guò)A作x軸的垂線交橢圓C與另一點(diǎn)Q(Q不與重合).設(shè)的外心為G,求證為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com