【題目】人口平均預(yù)期壽命是綜合反映人們健康水平的基本指標.年第六次全國人口普查資料表明,隨著我國社會經(jīng)濟的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國人口平均預(yù)期壽命繼續(xù)延長,國民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國平均預(yù)期壽命變化情況,依據(jù)此圖,下列結(jié)論錯誤的是( )
A.男性的平均預(yù)期壽命逐漸延長
B.女性的平均預(yù)期壽命逐漸延長
C.男性的平均預(yù)期壽命延長幅度略高于女性
D.女性的平均預(yù)期壽命延長幅度略高于男性
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設(shè)點,直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且它的一個焦點與拋物線的焦點相同.直線過點,且與橢圓相交于兩點.
(1)求橢圓的方程;
(2)若直線的一個方向向量為,求的面積(其中為坐標原點);
(3)試問:在軸上是否存在點,使得為定值?若存在,求出點的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的短軸長為2,離心率為,左頂點為A,過點A的直線l與C交于另一個點M,且與直線x=t交于點N.
(1)求橢圓C的方程;
(2)是否存在實數(shù)t,使得為定值?若存在,求實數(shù)t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點,與圓交于不同的兩點A、B,面積為,面積為,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單位圓O:x2+y2=1上任取一點P(x,y),圓O與x軸正向的交點是A,設(shè)將OA繞原點O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達式分別為x=f(θ),y=g(θ),則下列說法正確的是( 。
A.x=f(θ)是偶函數(shù),y=g(θ)是奇函數(shù)
B.x=f(θ)在為增函數(shù),y=g(θ)在為減函數(shù)
C.f(θ)+g(θ)≥1對于恒成立
D.函數(shù)t=2f(θ)+g(2θ)的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和Sn滿足4Sn=an2+2an,n∈N*.設(shè)bn=(﹣1)nanan+1,Tn為數(shù)列{bn}的前n項和,則T2n=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com