已知關(guān)于x的方程x2+(2+a)x+1+a+b=0的兩根為x1,x2,且0<x1<1<x2,則
2a+3b
3a
的取值范圍是( 。
分析:由方程x2+(2+a)x+1+a+b=0的兩根滿足0<x1<1<x2,結(jié)合對應(yīng)二次函數(shù)性質(zhì)得到
f(0)>0
f(1)<0
,然后在平面直角坐標(biāo)系中,做出滿足條件的可行域,分析
b
a
的幾何意義,然后數(shù)形結(jié)合即可得到結(jié)論,從而可求
2a+3b
3a
的取值范圍.
解答:解:由程x2+(2+a)x+1+a+b=0的二次項系數(shù)為1>0,
故函數(shù)f(x)=x2+(2+a)x+1+a+b圖象開口方向朝上
又∵方程x2+(2+a)x+1+a+b=0的兩根滿足0<x1<1<x2,
f(0)>0
f(1)<0

1+a+b>0
1+2+a+1+a+b<0

1+a+b>0
4+2a+b<0

其對應(yīng)的平面區(qū)域如下圖陰影示:

b
a
表示陰影區(qū)域上一點(diǎn)與原點(diǎn)邊線的斜率
由圖可知
b
a
∈(-2,-
2
3
)

2a+3b
3a
=
2
3
+
b
a

2a+3b
3a
∈(-
4
3
,0)

故選A.
點(diǎn)評:本題考查的知識點(diǎn)是一元二次方程的根的分布與系數(shù)的關(guān)系,三個二次之間的關(guān)系,線性規(guī)劃,其中由方程x2+(2+a)x+1+a+b=0的兩根滿足0<x1<1<x2,結(jié)合二次函數(shù)性質(zhì)得到
f(0)>0
f(1)<0
是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|x2-6x|=a(a>0)的解集為P,則P中所有元素的和可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2mx+m-3=0的兩個實數(shù)根x1,x2滿足x1∈(-1,0),x2∈(3,+∞),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-(1-i)x+m+2i=0有實根,則m=
-6
-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+2px-(q2-2)=0(p,q∈R)無實根,則p+q的取值范圍是
(-2,2)
(-2,2)

查看答案和解析>>

同步練習(xí)冊答案