【題目】為降低汽車尾氣排放量,某工廠設(shè)計(jì)制造了、兩種不同型號(hào)的節(jié)排器,規(guī)定性能質(zhì)量評(píng)分在的為優(yōu)質(zhì)品.現(xiàn)從該廠生產(chǎn)的、兩種型號(hào)的節(jié)排器中,分別隨機(jī)抽取500件產(chǎn)品進(jìn)行性能質(zhì)量評(píng)分,并將評(píng)分分別分成以下六個(gè)組;,,,,,,繪制成如圖所示的頻率分布直方圖:
(1)設(shè)500件型產(chǎn)品性能質(zhì)量評(píng)分的中位數(shù)為,直接寫出所在的分組區(qū)間;
(2)請(qǐng)完成下面的列聯(lián)表(單位:件)(把有關(guān)結(jié)果直接填入下面的表格中);
型節(jié)排器 | 型節(jié)排器 | 總計(jì) | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
總計(jì) | 500 | 500 | 1000 |
(3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為、兩種不同型號(hào)的節(jié)排器性能質(zhì)量有差異?
附:,其中.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
【答案】(1)(2)見解析(3)有的把握認(rèn)為兩種不同型號(hào)的節(jié)排器性能質(zhì)量有差異.
【解析】
(1)中位數(shù)左邊和右邊的頻率各占一半,由此判斷出中位數(shù)所在區(qū)間是.(2)根據(jù)題目所給數(shù)據(jù)填寫好聯(lián)表.(2)計(jì)算的值,由此判斷出有的把握認(rèn)為兩種不同型號(hào)的節(jié)排器性能質(zhì)量有差異.
解:(1);
(2)列聯(lián)表如下:
A型節(jié)排器 | B型節(jié)排器 | 總計(jì) | |
優(yōu)質(zhì)品 | 180 | 140 | 320 |
非優(yōu)質(zhì)品 | 320 | 360 | 680 |
總計(jì) | 500 | 500 | 1000 |
(3)由于
所以有的把握認(rèn)為兩種不同型號(hào)的節(jié)排器性能質(zhì)量有差異.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點(diǎn)在以為直徑的圓上,,,,平面平面.
(1)證明:平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個(gè)小球,分別寫有“和、平、世、界”四個(gè)字,有放回地從中任取一個(gè)小球,直到“和”“平”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“和、平、世、界”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下24個(gè)隨機(jī)數(shù)組:
232 321 230 023 123 021 132 220 011 203 331 100
231 130 133 231 031 320 122 103 233 221 020 132
由此可以估計(jì),恰好第三次就停止的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若只有一個(gè)零點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點(diǎn), 為坐標(biāo)原點(diǎn),若,求原點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:①“若,則,互為倒數(shù)”的逆命題;②“面積相等的三角形全等”的否命題;③“若,則有實(shí)數(shù)解”的逆否命題;④“若,則”的逆否命題.其中真命題為________(填寫所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若雙曲線與雙曲線有共同的漸近線,且過點(diǎn).
(1)求雙曲線的方程;
(2)過的直線與雙曲線的左支交于、兩點(diǎn),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓外的點(diǎn)在軸的右側(cè)運(yùn)動(dòng),且到圓上的點(diǎn)的最小距離等于它到軸的距離,記的軌跡為.
(1)求的方程;
(2)過點(diǎn)的直線交于,兩點(diǎn),以為直徑的圓與平行于軸的直線相切于點(diǎn),線段交于點(diǎn),證明:的面積是的面積的四倍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com