【題目】下面是關于公差d>0的等差數(shù)列{an}的四個命題:p1:數(shù)列{an}是遞增數(shù)列;p2:數(shù)列{an}的前n項和Sn是遞增數(shù)列;p3:數(shù)列{ }是遞增數(shù)列;p4:數(shù)列{an+nd}是遞增數(shù)列.其中的真命題為( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
【答案】D
【解析】解:對于p1,∵d>0,∴d=an+1﹣an>0,∴an+1>an,∴數(shù)列{an}是遞增數(shù)列,p1是真命題.
對于p2,sn= ,根據(jù)二次函數(shù)的單調性可知,在n∈N+不一定單調遞增,故p2是假命題.
對于p3. ,當a1﹣d>0時,數(shù)列{ }是遞減數(shù)列,故p3是假命題.
對于p4,∵[an+1+(n+1)d]﹣[an+nd]=2d,∴數(shù)列{an+nd}是遞增數(shù)列.故p4是真命題.
故選:D.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1,g(x)=lnx﹣ax+a,若存在x0∈(1,2),使得f(x0)g(x0)<0,則實數(shù)a的取值范圍是( )
A.
B.(ln2,e﹣1)
C.[1,e﹣1)
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y2=2px(p>0)的準線l與x軸交于點M,過M的直線與拋物線交于A,B兩點.設A(x1 , y1)到準線l的距離為d,且d=λp(λ>0).
(1)若y1=d=1,求拋物線的標準方程;
(2)若 +λ = ,求證:直線AB的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,錯誤的是( )
A.若p為真,則¬(¬p)也為真
B.若“p∧q為真”,則“p∨q為真”為真命題
C.x∈R,使得tanx=2017
D.“2x> ”是“l(fā)og x<0”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,
(Ⅰ)求證:面ADE⊥面 BDE;
(Ⅱ)求直線AD與平面DCE所成角的正弦值..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在以點C為圓心,且與直線BD相切的圓內運動,設 (α,β∈R),則α+β的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x1 , x2 , x3 , x4},xi∈{﹣1,0,1},i={1,2,3,4},那么集合A中滿足條件“x12+x22+x32+x42≤3”的元素個數(shù)為( )
A.60
B.65
C.80
D.81
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 =1的一個焦點為F(2,0),且離心率為
(1)求橢圓方程;
(2)過點M(3,0)作直線與橢圓交于A,B兩點,求△OAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com