已知數(shù)列{an}的首項a1=2,前n項和為Sn,且-a2,Sn,2an+1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記bn=
an
(an-1)(an+1-1)
,求證:數(shù)列{bn}的前n項和Tn∈[
2
3
,1)
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等差數(shù)列的通項公式,建立方程組,求出首項和公差,即可求數(shù)列{an}的通項公式; 
(2)利用裂項法,即可求Tn=
1
S1
+
1
S2
+…
1
Sn
的值.
解答: 解:(1)∵-a2,Sn,2an+1成等差數(shù)列,
∴2Sn=-a2+2an+1,
當n≥2,2Sn-1=-a2+2an,
兩式相減得2an=2an+1-2an,
∴2an=an+1,即
an+1
an
=2
,
當n=1時,2a1=-a2+2a2,即a2=2a1,滿足
an+1
an
=2
,
即數(shù)列{an}是公比q=2的等比數(shù)列,
則數(shù)列{an}的通項公式an=2×2n-1=2n; 
(2)bn=
an
(an-1)(an+1-1)
=
2n
(2n-1)(2n+1-1)
=
2n+1-1-(2n-1)
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1
,
則Tn=
1
2-1
-
1
22-1
+
1
22-1
-
1
23-1
+…+
1
2n-1
-
1
2n+1-1
=1-
1
2n+1-1
<1,
∵2n+1-1≥3,
∴1-
1
2n+1-1
≥1-
1
3
=
2
3
,
即Tn∈[
2
3
,1)成立.
點評:本題主要考查等差數(shù)列和等比數(shù)列的通項公式以及數(shù)列的求和,利用裂項法是解決本題的關(guān)鍵,考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=
4
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an≤1
,則a2013=( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,且S2=6,a1=4,則公差d等于(  )
A、3B、2C、1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),并滿足以下條件:
(1)f(x)=3axg(x),(a>0,a≠1);
(2)g(x)≠0;
(3)f(x)g′(x)<f′(x)g(x).
f(-1)
g(-1)
+
f(1)
g(1)
=10,則a=(  )
A、
1
3
B、3
C、
10
3
D、
1
3
或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sinα-cosα
2sinα+3cosα
=
1
5
,則tanα的值是(  )
A、±
8
3
B、
8
3
C、-
8
3
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA⊥平面ABCD,四邊形ABCD為矩形,PA=AD,M、N分別是AB、PC的中點,求證:
(1)MN∥平面PAD;           
(2)平面PMC⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次方程ax2-2bx+a=0(a,b∈R)
(Ⅰ)若a是集合{1,2,3}中任取一個元素,b是從集合{1,2,3}中任取一個元素,求上述方程有兩個不相等實數(shù)根的概率.
(Ⅱ)若a是從區(qū)間(0,3)任取的一個實數(shù),b是從區(qū)間(0,2)任取的一個實數(shù),求上述方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(x-1)2,g(x)=4(x-1).數(shù)列{an}滿足a1=2,(an+1-an)g(an)+f(an)=0.
(1)用an表示an+1;
(2)求證:{an-1}是等比數(shù)列
(3)(文科),若數(shù)列{an}的前n項和為Sn,試求n的最小值,使得Sn>n+3恒成立.
(理科)若bn=3f(an)-g(an+1),求數(shù)列{bn}的最大項和最小項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-kx+1.求:
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案