分析 (Ⅰ)由題意可得$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{n-1}}$+2,運(yùn)用等差數(shù)列的通項(xiàng)公式可得,Sn=$\frac{1}{2n}$,由an=Sn-Sn-1,即可得到數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求得f(n)=$\frac{n+1}{(n+2)(n+5)}$=$\frac{1}{(n+1)+\frac{4}{n+1}+5}$,由基本不等式即可得到f(n)的最大值及相應(yīng)的n值.
解答 解:(Ⅰ)由題意可得$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{n-1}}$+2,
可得$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{1}}$+2(n-1)=2n,
即為Sn=$\frac{1}{2n}$,則an=Sn-Sn-1=$\frac{1}{2n}$-$\frac{1}{2(n-1)}$
=-$\frac{1}{2}$•$\frac{1}{(n-1)n}$;bn=2(1-n)an=$\frac{1}{n}$;
(Ⅱ)f(n)=$\frac{_{n+2}}{(n+5)_{n+1}}$=$\frac{n+1}{(n+2)(n+5)}$
=$\frac{1}{(n+1)+\frac{4}{n+1}+5}$,
由(n+1)+$\frac{4}{n+1}$≥2$\sqrt{(n+1)•\frac{4}{n+1}}$=4,
當(dāng)且僅當(dāng)n=1時(shí),取得等號(hào).
即有f(n)≤$\frac{1}{4+5}$=$\frac{1}{9}$,
則f(n)的最大值為$\frac{1}{9}$及相應(yīng)的n=1.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)的求法,考查函數(shù)的最值的求法,注意運(yùn)用基本不等式,以及數(shù)列的通項(xiàng)和前n項(xiàng)和的關(guān)系,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{1}{3},1)$ | B. | $[\frac{3}{4},1)$ | C. | $(\frac{1}{3},\frac{3}{4})$ | D. | $(\frac{1}{3},\frac{3}{4}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com