如果函數(shù)y=x2-2ax+6是偶函數(shù),則a的值是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:運(yùn)用偶函數(shù)的定義得出f(-x)=f(x)
即x2+2ax+6=x2-2ax+6恒成立,得出2a=-2a,即可.
解答: 解:∵函數(shù)y=x2-2ax+6是偶函數(shù),
∴f(-x)=f(x)
即x2+2ax+6=x2-2ax+6恒成立,
2a=-2a,
解得;a=0
故答案為:0.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì),偶函數(shù)的定義,屬于容易題,轉(zhuǎn)化為等式恒成立即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合F={x|x=kπ+
π
6
,k∈Z}∪{x|x=kπ+
5
6
π,k∈Z},G={x|x=
3
+
π
6
,k∈Z},則集合F和G之間的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要使圓x2+y2+Dx+Ey+F=0與x軸的兩個(gè)交點(diǎn)分別位于原點(diǎn)的兩側(cè),則( 。
A、D2+E2-4F>0,且F>0
B、D<0,F(xiàn)>0
C、D≠0,F(xiàn)≠0
D、D2>4F,且F<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球與棱長(zhǎng)均為3的三棱錐各條棱都相切,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=100n-n2(n∈N+).
(1){an}是什么數(shù)列?
(2)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈[1,4],b∈[2,5],試求“a>b且a<2b”的概率.(請(qǐng)用畫(huà)圖法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=3sin(
1
2
x-
π
4
)的對(duì)稱軸方程,對(duì)稱中心,單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
ax+b
(a、b為常數(shù),a≠0)滿足f(2)=1,且f(x)=x有唯一解,若記xn=f(xn-1),且x1=1,求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是邊長(zhǎng)為a的正方形,且PD=a.
(1)求四棱錐P-ABCD的體積;
(2)若E為PC中點(diǎn),求證:PA∥平面BDE;
(3)求直線PB與平面ABCD所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案