已知函數(shù)數(shù)學(xué)公式,函數(shù)g(x)=-x2+3x,則方程f(x)=g(x)在實數(shù)范圍內(nèi)解的個數(shù)為________個.

4
分析:函數(shù)是奇函數(shù)且是單調(diào)增函數(shù),函數(shù)g(x)=-x2+3x的圖象是開口向下的拋物線,由此只要在同一坐標(biāo)系中作出兩個函數(shù)的圖象,觀察它們的交點的個數(shù),就可得出方程f(x)=g(x)在實數(shù)范圍內(nèi)解的個數(shù).
解答:在同一坐標(biāo)系中作出
和g(x)=-x2+3x的圖象,
發(fā)現(xiàn)x=0是它們的一個公共點.
再看兩個函數(shù)的圖象
在x<0的情況下有一個公共點;在在x>0的情況下有兩個個公共點
可得兩個函數(shù)圖象的公共點的個數(shù)為4個
故答案為4
點評:本題考查了方程的根的個數(shù)的問題,屬于中檔題.采用數(shù)形結(jié)合的方法,觀察兩函數(shù)圖象的公共點的個數(shù),找到方程個數(shù),是這類問題常用的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(Ⅰ)若a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數(shù)的一個極值點,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=2時,函數(shù)g(x)=-x2-b,(b>0),若對任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數(shù)的一個極值點,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=2時,函數(shù)g(x)=-x2-b,(b>0),若對任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州十四中高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a為常數(shù)),若函數(shù)f(x)的最大值為
(1)求實數(shù)a的值;
(2)將函數(shù)y=f(x)的圖象向左平移個單位,再向下平移2個單位得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案