18.f(x)=(log3 x)2+(a-1)log3x+3a-2,(x>0,a∈R).
(1)若函數(shù)f(x)的值域是[2,+∞),求a的值;
(2)若f(3x)+log3(9x)≤0對于任意x∈[3,9]恒成立,求a的取值范圍.

分析 (1)log3 x=t,利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)即可求函數(shù)的最值.
(2)設(shè)log3 3x=m,則m∈[2,3],得到m2+am+3a-1≤0,對于m∈[2,3]恒成立,利用二次函數(shù)的性質(zhì)得到,解得即可.

解答 解:(1)log3x=t,
∴g(t)=t2+(a-1)t+3a-2,開口向上,
當(dāng)t=$\frac{1}{2}$(1-a)時,函數(shù)有最小值,
f($\frac{1}{2}$(1-a))=$\frac{1}{4}$(1-a)2+$\frac{1}{2}$(a-1)(1-a)+3a-2=2,
解得a=7±4$\sqrt{2}$,
(2)∵f(3x)+log3(9x)≤0任意x∈[3,9]恒成立,
∴(log3 3x)2+(a-1)log33x+3a-2+log3(9x)≤0,
再設(shè)log3 3x=m,則m∈[2,3],
∴m2+(a-1)m+3a-2+1+m≤0,對于m∈[2,3]恒成立,
即m2+am+3a-1≤0,
設(shè)h(m)=m2+am+3a-1,
則$\left\{\begin{array}{l}{h(2)≤0}\\{h(3)≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{4+2a+3a-1≤0}\\{9+3a+3a-1≤0}\end{array}\right.$,
解得a≤-$\frac{4}{3}$
∴a的取值范圍(-∞,-$\frac{4}{3}$].

點評 本題主要考查函數(shù)的最值的求法,利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)的解決本題的關(guān)鍵,考查學(xué)生的計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點P(2,-1)與點Q關(guān)于點O(1,0)對稱,則點Q的坐標(biāo)為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若sinα+sinβ=1-$\frac{\sqrt{3}}{2}$,cosα+cosβ=$\frac{1}{2}$.則cos(α-β)的值為( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.說明由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換就能得到下列函數(shù)的圖象:
(1)y=sin(x+$\frac{π}{4}$); 
(2)y=sin(2x-$\frac{π}{3}$);
(4)y=5sin(3x-$\frac{π}{4}$);
(3)y=$\frac{1}{2}$sin($\frac{1}{3}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)y=f(x)的圖象過點(-1,3),且不等式f(x)-7x<0的解集為($\frac{1}{4}$,1),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx,g(x)=(-x2+ax-3)ex(a為實數(shù))
(1)求f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值h(t);
(3)若對任意x∈[$\frac{1}{e}$,e],都有g(shù)(x)≥2exf(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.畫出以二元一次不等式x+2y-5<0的解為坐標(biāo)的點在平面直角坐標(biāo)系中的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a=2-1,b=${3}^{\frac{1}{5}}$,c=${3}^{\frac{4}{5}}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<c<aC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.經(jīng)過兩直線2x-3y-12=0和x+y-1=0的交點,并且在兩坐標(biāo)軸上的截距相等的直線方程為2x+3y=0;或x+y+1=0.

查看答案和解析>>

同步練習(xí)冊答案