3.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標原點,f(x)<0的解集為(0,$\frac{2}{3}$),數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N+)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項和,求使得Tn<$\frac{m}{20}$對所有n∈N+都成立的最小正整數(shù)m.

分析 (1)利用待定系數(shù)法求出函數(shù)f(x)的表達式,結合數(shù)列的前n項和公式即可求數(shù)列{an}的通項公式;
(2)求出bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,利用裂項法進行求解,解不等式即可.

解答 解:(1)設這二次函數(shù)f(x)=ax2+bx (a≠0),則 f′(x)=2ax+b,由f(x)<0的解集為(0,$\frac{2}{3}$),
得a=3,b=-2,所以  f(x)=3x2-2x.
又因為點(n,Sn)(n∈N+)均在函數(shù)y=f(x)的圖象上,所以Sn=3n2-2n.
當n≥2時,an=Sn-Sn-1=(3n2-2n)-3(n-1)2-2(n-1)=6n-5.
當n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 (n∈N+
(2)由(Ⅰ)得知bn=$\frac{3}{{a}_{n}{a}_{n+1}}$=$\frac{3}{(6n-5)[6(n-1)-5]}$=$\frac{1}{2}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$),
故Tn=$\frac{1}{2}$(1-$\frac{1}{7}+\frac{1}{7}-\frac{1}{13}$+…+$\frac{1}{6n-5}$-$\frac{1}{6n+1}$)=$\frac{1}{2}$(1-$\frac{1}{6n+1}$),
因此,要使Tn<$\frac{m}{20}$,即$\frac{1}{2}$(1-$\frac{1}{6n+1}$)<$\frac{m}{20}$,成立的m,必須且僅須滿足$\frac{1}{2}$≤$\frac{m}{20}$,
即m≥10,所以滿足要求的最小正整數(shù)m為10.

點評 本題主要考查數(shù)列通項公式以及數(shù)列求和的應用,利用裂項法是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)y=2x+x、y=1og3x+x、y=x-$\frac{1}{\sqrt{x}}$零點分別為a,b,c,則(  )
A.c>b>aB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若x1滿足2010x+2010x=2,x2滿足2010x+2010log2010(x-1)=2,則x1+x2=( 。
A.1B.$\frac{2011}{2010}$C.$\frac{1006}{1005}$D.$\frac{2013}{2010}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列四個命題:
(1)“?x∈R,x2-x+1≤0”的否定;
(2)“若x2+x-6≥0,則x>2”的否命題;
(3)在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充分不必要條件;
(4)“k=2”是“函數(shù)f(x)=2x-(k2-3)•2-x為奇函數(shù)”的充要條件.
其中真命題的序號是(1),(2)(真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某校為了解學生一次考試后數(shù)學、物理兩個科目的成績情況,從中隨機抽取了25位考生的成績進行統(tǒng)計分析.25位考生的數(shù)學成績已經(jīng)統(tǒng)計在莖葉圖中,物理成績?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計;
(Ⅱ)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學成績的頻數(shù)分布表及數(shù)學成績的頻率分布直方圖;
數(shù)學成績分組[50,60﹚[60,70﹚[70,80﹚[80,90﹚[90,100﹚[100,110﹚[110,120]
頻數(shù)       

(Ⅲ)設上述樣本中第i位考生的數(shù)學、物理成績分別為xi,yi(i=1,2,3,…,25).通過對
樣本數(shù)據(jù)進行初步處理發(fā)現(xiàn):數(shù)學、物理成績具有線性相關關系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y關于x的線性回歸方程,并據(jù)此預測當某考生的數(shù)學成績?yōu)?00分時,該考生的物理成績(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.觀察下面幾個算式,找出規(guī)律:
1+2+1=4;   
1+2+3+2+1=9;   
1+2+3+4+3+2+1=16;
1+2+3+4+5+4+3+2+1=25;

利用上面的規(guī)律,請你算出1+2+3+…+99+100+99+…+3+2+1=10000.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=acosx+xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$].當1<a<2時,則函數(shù)f(x)極值點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某學校安排3位老師與5名學生去3地參觀學習,每地至少去1名老師和1名學生,則不同的安排方法總數(shù)為(  )
A.1800B.900C.300D.1440

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.(理)在三棱錐S-ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,平面SBC與平面SAC所成的角為60°,且三棱錐S-ABC的體積為$\frac{{9\sqrt{3}}}{2}$,則三棱錐的外接球的半徑為( 。
A.3B.1C.2D.4

查看答案和解析>>

同步練習冊答案