A. | 1 | B. | $\frac{2011}{2010}$ | C. | $\frac{1006}{1005}$ | D. | $\frac{2013}{2010}$ |
分析 由2010x1+$201{0}^{{x}_{1}}$=2,可得$201{0}^{{x}_{1}}$=2-2010x1,可得x1=log2010(2-2010x1),于是2010x1=2010log2010(2-2010x1),令2010x1=2012-2010t,代入上式可得:2012-2010t=2010+2010log2010(t-1),與2010log2010(x2-1)=2-2010x2比較可得:t=x2.即可得出.
解答 解:由2010x1+$201{0}^{{x}_{1}}$=2,可得$201{0}^{{x}_{1}}$=2-2010x1,可得x1=log2010(2-2010x1),
∴2010x1=2010log2010(2-2010x1),
令2010x1=2012-2010t,代入上式可得:2012-2010t=2010+2010log2010(t-1),
∴2-2010t=2010log2010(t-1),與2010log2010(x2-1)=2-2010x2比較可得:t=x2.
∴2010x1=2012-2010x2,化為x1+x2=$\frac{2012}{2010}$=$\frac{1006}{1005}$.
故選:C.
點評 本題考查了指數(shù)函數(shù)的性質(zhì)、換元法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間(0,+∞)上是增函數(shù) | B. | 在區(qū)間(-∞,+∞)上是增函數(shù) | ||
C. | 在區(qū)間(0,+∞)上是減函數(shù) | D. | 在區(qū)間(-∞,+∞)上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com