若y=sinx是增函數(shù),y=cosx是減函數(shù),那么角x在第
 
象限.
考點:正弦函數(shù)的單調(diào)性,三角函數(shù)值的符號,余弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)正弦函數(shù)、余弦函數(shù)的圖象特征,可得結(jié)論.
解答: 解:根據(jù)y=sinx是增函數(shù),y=cosx是減函數(shù),聯(lián)系正弦曲線和余弦曲線,可得角x在第一象限,
故答案為:一.
點評:本題主要考查正弦函數(shù)、余弦函數(shù)的圖象特征,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若三角形三邊之比為3:5:7,則其最大角為
 
度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-3,x∈{x∈N|-1≤x≤4},則函數(shù)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四面體的外接球和內(nèi)切球的半徑之比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(
x2+1
-x)是
 
 (奇、偶)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種平面分形圖如圖所示,一級分形圖是由一點出發(fā)的三條線段,長度均為1,兩兩夾角為120°;二級分形圖是在一級分形圖的每一條線段的末端再生成兩條長度均為原來
1
3
的線段;且這兩條線段與原線段兩兩夾角為120°;…;依此規(guī)律得到n級分形圖,則
(Ⅰ)四級分形圖中共有
 
條線段;
(Ⅱ)n級分形圖中所有線段的長度之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax+3(a>0且≠0)的圖象恒過定點P,則P點的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1,x為有理數(shù)
0,x為無理數(shù)
,則下列結(jié)論錯誤的是( 。
A、f(x)不是單調(diào)函數(shù)
B、f(x)不是周期函數(shù)
C、f(x)是偶函數(shù)
D、f(x)的值域為{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=-cos2x的圖象,可以將y=sin2x的圖象( 。
A、向左平移
2
B、向右平移
2
C、向左平移
4
D、向右平移
4

查看答案和解析>>

同步練習(xí)冊答案