20.已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,則a的值為( 。
A.1B.2C.3D.1或2

分析 分別令a=1、2、3,求出B中方程對應的解,即可得出A∩B≠∅時a的取值.

解答 解:a=1時,B中方程為x2-3x+1=0,其解為無理數(shù),A∩B=∅;
a=2時,B中方程為x2-3x+2=0,其解為1和2,A∩B={1,2}≠∅;
a=3時,B中方程為x2-3x+3=0,無解,A∩B=∅;
綜上,a的值為2.
故選:B.

點評 本題考查了交集的定義與應用問題,也考查了一元二次方程的解法與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an},其前n項和為Sn,給出下列命題:
①若{an}是等差數(shù)列,則$({10,\frac{{{S_{10}}}}{10}}),({100,\frac{{{S_{100}}}}{100}}),({110,\frac{{{S_{110}}}}{110}})$三點共線;
②若{an}是等差數(shù)列,則${S_m},{S_{2m}}-{S_m},{S_{3m}}-{S_{2m}}({m∈{N^*}})$;
③若${a_1}=1,{S_{n+1}}=\frac{1}{2}{S_n}+2$,則數(shù)列{an}是等比數(shù)列;
④若${a_{n+1}}^2={a_n}{a_{n+2}}$,則數(shù)列{an}是等比數(shù)列.
其中證明題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l1:kx-y+4=0與直線l2:x+ky-3=0(k≠0)分別過定點A、B,又l1、l2相交于點M,則|MA|•|MB|的最大值為$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(m,1),且$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow$)與$\overrightarrow$垂直,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.拋物線y2=4x上一點M到焦點的距離為5,則點M的橫坐標為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.A是拋物線y2=2px(p>0)上的一點,F(xiàn)為拋物線的焦點,O為坐標原點,當|AF|=4時,∠OFA=120°,則拋物線的準線方程是( 。
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.化簡:$\frac{{2sin({π-θ})+sin2θ}}{{{{cos}^2}\frac{θ}{2}}}$=4sinθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知圓M:(x-a)2+y2=4(a>0)與圓N:x2+(y-1)2=1外切,則直線x-y-$\sqrt{2}$=0被圓M截得線段的長度為( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)定義在區(qū)間(-1,1)內(nèi),對于任意的x,y∈(-1,1)有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當x<0時,f(x)>0.
(1)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(2)若f(-$\frac{1}{2}$)=1,求方程f(x)+$\frac{1}{2}$=0的解.

查看答案和解析>>

同步練習冊答案