如圖,四棱錐中,底面是菱形,,,,,,是的中點(diǎn),上的點(diǎn)滿足.
(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.
(I)詳見(jiàn)解析;(Ⅱ) .
解析試題分析:(Ⅰ)是菱形,,這是由兩個(gè)正三角形構(gòu)成的菱形,又是的中點(diǎn),.又,.由此可得 平面.(Ⅱ)是由正三角形構(gòu)成的菱形,又是的中點(diǎn),所以,所以.另外根據(jù)所給長(zhǎng)度,用勾股定理可得,又,,平面.又,所以點(diǎn)F到平面BEC的距離等于,這樣由棱錐的體積公式可得的體積.
試題解析:(Ⅰ)證明: ,是的中點(diǎn),
. (2分)
,,,
是正三角形, (3分)
. (4分)
又,
平面. (5分)
(Ⅱ)由(Ⅰ)和題設(shè)知:在中,,
,,
. (6分)
,,滿足,
. (7分)
又,,
平面. (8分)
過(guò)作于,則,平面,
,. (10分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2,BC=3.
(1)求證:AB1∥平面BC1D;
(2)求四棱錐B-AA1C1D的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示為一個(gè)幾何體的直觀圖、三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形).
(1)求四棱錐P-ABCD的體積;
(2)若G為BC上的動(dòng)點(diǎn),求證:AE⊥PG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某工廠為了制造一個(gè)實(shí)心工件,先畫(huà)出了這個(gè)工件的三視圖(如圖),其中正視圖與側(cè)視圖為兩個(gè)全等的等腰三角形,俯視圖為一個(gè)圓,三視圖尺寸如圖所示(單位cm);
(1)求出這個(gè)工件的體積;
(2)工件做好后,要給表面噴漆,已知噴漆費(fèi)用是每平方厘米1元,現(xiàn)要制作10個(gè)這樣的工件,請(qǐng)計(jì)算噴漆總費(fèi)用(精確到整數(shù)部分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH//平面AEF;
(Ⅲ)求多面體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐的三視圖和直觀圖如下圖所示,其中正視圖、側(cè)視圖是直角三角形,俯視圖是有一條對(duì)角線的正方形.是側(cè)棱上的動(dòng)點(diǎn).
(1)求證:;
(2)若為的中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖是某三棱柱被削去一個(gè)底面后的直觀圖與側(cè)(左)視圖、俯視圖.已知CF=2AD,側(cè)(左)視圖是邊長(zhǎng)為2的等邊三角形;俯視圖是直角梯形,有關(guān)數(shù)據(jù)如圖所示.求該幾何體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com