【題目】函數(shù) y f(x) 的定義域?yàn)?/span>[2.1,2],其圖像如下圖所示,且 f(2.1) 0.96
(1)若函數(shù) yf(x) k恰有兩個不同的零點(diǎn),則 k_____
(2)已知函數(shù) g ( x) , yg[f(x)] 有_____個不同的零點(diǎn)
【答案】4或0 4
【解析】
(1)函數(shù) yf(x) k恰有兩個不同的零點(diǎn)等價于y=f(x)和y=k的圖象有兩個不同的交點(diǎn),再結(jié)合圖像即可得解;
(2)先由函數(shù)g(x),求得函數(shù)g(x)的零點(diǎn) ,再求解的解的個數(shù)即可.
解:(1)∵y=f(x)﹣k恰有兩個不同的零點(diǎn),
∴y=f(x)和y=k圖象有兩個不同的交點(diǎn).
又y=f(x)的圖象如圖:由圖可得:當(dāng)y=f(x)和y=k圖象有兩個不同的交點(diǎn)時,
k=4或k=0.
(2)∵g(x),
當(dāng)x≤0時,2x+1=0,得x;
此時f(x),由圖可知有一個解;
當(dāng)x>0時,g(x)=x3+2x﹣16單調(diào)遞增,
∵g(2)=﹣4,g(3)=17,
∴g(x)在(2,3)有一個零點(diǎn)x0,即f(x)=x0∈(2,3)
由圖可知有三個解,
∴共有四個解.
故答案為(1). 4或0 (2). 4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn),的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案側(cè)面的外輪廓線如圖所示:曲線是以點(diǎn)為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菱形中,平面,,,
(1)證明:直線平面;
(2)求二面角的正弦值;
(3)線段上是否存在點(diǎn)使得直線與平面所成角的正弦值為?若存在,求;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九章算術(shù)中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點(diǎn)與相對的棱刨開,得到一個陽馬底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐和一個鱉臑四個面均為直角三角形的四面體在如圖所示的塹堵中,已知,若陽馬的外接球的表面積等于,則鱉臑的所有棱中,最長的棱的棱長為( )
A.5B.C.D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,…,是由()個整數(shù),,…,按任意次序排列而成的數(shù)列,數(shù)列滿足().
(1)當(dāng)時,寫出數(shù)列和,使得.
(2)證明:當(dāng)為正偶數(shù)時,不存在滿足()的數(shù)列.
(3)若,,…,是,,…,按從大到小的順序排列而成的數(shù)列,寫出(),并用含的式子表示.
(參考:.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com