16.記log827=m,用m表示log616=$\frac{4}{1+m}$;已知log37=a,log34=b,則log1221=$\frac{1+a}{1+b}$.

分析 利用對數(shù)的運算性質和換底公式化簡已知的等式,進一步代入要求值的式子得答案.

解答 解:∵log827=m,∴$lo{g}_{{2}^{3}}{3}^{3}=m$,即log23=m,
∴$\frac{lo{g}_{2}{2}^{4}}{lo{g}_{2}2+lo{g}_{2}3}=\frac{4}{1+lo{g}_{2}3}=\frac{4}{1+m}$;
∵log37=a,log34=b,
∴l(xiāng)og1221=$\frac{lo{g}_{3}3×7}{lo{g}_{3}3×4}=\frac{1+lo{g}_{3}7}{1+lo{g}_{3}4}=\frac{1+a}{1+b}$.
故答案為:$\frac{4}{1+m};\frac{1+a}{1+b}$.

點評 本題考查對數(shù)的運算性質,考查了換底公式的應用,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在直角三角形BMC中,∠BCM=90°,∠MBC=60°,BM=5,MA=3,且MA⊥AC,AB=4.求MC與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知正方體ABCD-A′B′C′D′的棱長為a,點P是平面AA′D′D的中心,Q為B′D′上一點,且PQ∥平面AA′B′B,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若以橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸端點B(0,1)為直角頂點作橢圓內接等腰直角三角形,問這樣的三角形能不能做?若能做,可做多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{{x}^{2}+2x+a}{x}$,x∈[1,+∞).
(1)當a=$\frac{1}{4}$時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍;
(3)若關于x的方程f(x)=a在[2,3]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)f(x)=$\frac{1}{2}$(cosx-sinx)(cosx+sinx)-2asinx+b(a>0).
(1)若b=1,且對任意x∈(0,$\frac{π}{6}$),恒有f(x)>0,求a的取值范圍.
(2)若f(x)的最大值為1,最小值為-4,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{c-3b}{a}$=$\frac{cos(A+B)}{cosA}$.
(Ⅰ)求cosA的值;
(Ⅱ)求sin2$\frac{B+C}{2}$-2sin(A-$\frac{π}{3}$)•sin(A+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知log189=a,18b=5,請用a,b表示$\frac{lo{g}_{18}45}{lo{g}_{18}36}$=$\frac{b+a}{2-a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知橢圓的上頂點和左焦點都在直線y=2x+2上,則這一橢圓的標準方程是(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

同步練習冊答案