分析 利用對數(shù)的運算性質和換底公式化簡已知的等式,進一步代入要求值的式子得答案.
解答 解:∵log827=m,∴$lo{g}_{{2}^{3}}{3}^{3}=m$,即log23=m,
∴$\frac{lo{g}_{2}{2}^{4}}{lo{g}_{2}2+lo{g}_{2}3}=\frac{4}{1+lo{g}_{2}3}=\frac{4}{1+m}$;
∵log37=a,log34=b,
∴l(xiāng)og1221=$\frac{lo{g}_{3}3×7}{lo{g}_{3}3×4}=\frac{1+lo{g}_{3}7}{1+lo{g}_{3}4}=\frac{1+a}{1+b}$.
故答案為:$\frac{4}{1+m};\frac{1+a}{1+b}$.
點評 本題考查對數(shù)的運算性質,考查了換底公式的應用,是基礎的計算題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com